Human‐multimodal deep learning collaboration in ‘precise’ diagnosis of lupus erythematosus subtypes and similar skin diseases

医学 皮肤病科 鉴别诊断 皮肤损伤 目的皮肤病学 人体皮肤 临床诊断 红斑狼疮 病理 远程医疗 儿科 免疫学 抗体 经济 医疗保健 生物 遗传学 经济增长
作者
Qianwen Li,Zhi Yang,Kaili Chen,Ming Zhao,Hai Long,Yueming Deng,Haoran Hu,Jia Chen,Mei-Yu Wu,Zhidan Zhao,Huan Zhu,Suqing Zhou,Mingming Zhao,Pengpeng Cao,Shengnan Zhou,Yang Song,Guishao Tang,Juan Liu,Jiaojiao Jiang,Liao Wei
出处
期刊:Journal of The European Academy of Dermatology and Venereology [Wiley]
卷期号:38 (12): 2268-2279 被引量:4
标识
DOI:10.1111/jdv.20031
摘要

Abstract Background Lupus erythematosus (LE) is a spectrum of autoimmune diseases. Due to the complexity of cutaneous LE (CLE), clinical skin image‐based artificial intelligence is still experiencing difficulties in distinguishing subtypes of LE. Objectives We aim to develop a multimodal deep learning system (MMDLS) for human‐AI collaboration in diagnosis of LE subtypes. Methods This is a multi‐centre study based on 25 institutions across China to assist in diagnosis of LE subtypes, other eight similar skin diseases and healthy subjects. In total, 446 cases with 800 clinical skin images, 3786 multicolor‐immunohistochemistry (multi‐IHC) images and clinical data were collected, and EfficientNet‐B3 and ResNet‐18 were utilized in this study. Results In the multi‐classification task, the overall performance of MMDLS on 13 skin conditions is much higher than single or dual modals (Sen = 0.8288, Spe = 0.9852, Pre = 0.8518, AUC = 0.9844). Further, the MMDLS‐based diagnostic‐support help improves the accuracy of dermatologists from 66.88% ± 6.94% to 81.25% ± 4.23% ( p = 0.0004). Conclusions These results highlight the benefit of human‐MMDLS collaborated framework in telemedicine by assisting dermatologists and rheumatologists in the differential diagnosis of LE subtypes and similar skin diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风趣不正完成签到,获得积分10
1秒前
FashionBoy应助人间理想采纳,获得10
1秒前
1秒前
1秒前
Attempter发布了新的文献求助10
2秒前
yjr发布了新的文献求助10
2秒前
科研助手6应助你吼采纳,获得30
3秒前
aich完成签到,获得积分10
4秒前
4秒前
pbj发布了新的文献求助10
4秒前
呵呵呵发布了新的文献求助10
4秒前
miao发布了新的文献求助10
4秒前
书生完成签到,获得积分10
5秒前
lll完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
乔垣结衣应助nbnbaaa采纳,获得10
7秒前
justdoit完成签到,获得积分10
7秒前
shuang发布了新的文献求助10
7秒前
大模型应助柠檬草采纳,获得10
7秒前
健忘的飞雪完成签到,获得积分10
8秒前
9秒前
顾矜应助承乐采纳,获得10
9秒前
lin发布了新的文献求助10
9秒前
星辰大海应助yx采纳,获得10
9秒前
Hello应助清风浮云采纳,获得30
11秒前
Emma应助胖虎采纳,获得10
11秒前
LI电池完成签到,获得积分10
11秒前
超帅蓝血完成签到 ,获得积分10
11秒前
bobo完成签到,获得积分10
11秒前
尊敬蛋挞发布了新的文献求助10
12秒前
杰克发布了新的文献求助10
12秒前
sunsun发布了新的文献求助10
12秒前
12秒前
爆米花应助pbj采纳,获得10
12秒前
清风发布了新的文献求助10
12秒前
14秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4063856
求助须知:如何正确求助?哪些是违规求助? 3602290
关于积分的说明 11440705
捐赠科研通 3325417
什么是DOI,文献DOI怎么找? 1828098
邀请新用户注册赠送积分活动 898566
科研通“疑难数据库(出版商)”最低求助积分说明 819103