Structure Embedded Nucleus Classification for Histopathology Images

模式识别(心理学) 人工智能 计算机科学 核心 人工神经网络 多边形(计算机图形学) 图形 理论计算机科学 生物 电信 帧(网络) 细胞生物学
作者
Wei Lou,Xiang Wan,Guanbin Li,Xiaoying Lou,Chenghang Li,Feng Gao,Haofeng Li
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 3149-3160 被引量:7
标识
DOI:10.1109/tmi.2024.3388328
摘要

Nuclei classification provides valuable information for histopathology image analysis. However, the large variations in the appearance of different nuclei types cause difficulties in identifying nuclei. Most neural network based methods are affected by the local receptive field of convolutions, and pay less attention to the spatial distribution of nuclei or the irregular contour shape of a nucleus. In this paper, we first propose a novel polygon-structure feature learning mechanism that transforms a nucleus contour into a sequence of points sampled in order, and employ a recurrent neural network that aggregates the sequential change in distance between key points to obtain learnable shape features. Next, we convert a histopathology image into a graph structure with nuclei as nodes, and build a graph neural network to embed the spatial distribution of nuclei into their representations. To capture the correlations between the categories of nuclei and their surrounding tissue patterns, we further introduce edge features that are defined as the background textures between adjacent nuclei. Lastly, we integrate both polygon and graph structure learning mechanisms into a whole framework that can extract intra and inter-nucleus structural characteristics for nuclei classification. Experimental results show that the proposed framework achieves significant improvements compared to the previous methods. Code and data are made available via https://github.com/lhaof/SENC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YOUGIANT关注了科研通微信公众号
刚刚
pengcheng发布了新的文献求助10
刚刚
烟花应助阿巴阿巴采纳,获得10
刚刚
刚刚
无花果应助坚定醉蓝采纳,获得10
刚刚
彭于晏应助用户0921coins采纳,获得10
刚刚
kittency完成签到 ,获得积分10
刚刚
1秒前
2秒前
英姑应助是小王ya采纳,获得10
2秒前
Lucas应助黑色幽默采纳,获得10
3秒前
王王完成签到 ,获得积分10
4秒前
4秒前
欣欣发布了新的文献求助10
4秒前
4秒前
CAOHOU应助yydx采纳,获得10
5秒前
5秒前
jennywqs完成签到,获得积分10
5秒前
6秒前
6秒前
可爱的函函应助ee采纳,获得10
6秒前
6秒前
尹尹尹发布了新的文献求助10
6秒前
mc发布了新的文献求助10
7秒前
滴滴发布了新的文献求助10
7秒前
8秒前
给我一颗糖完成签到,获得积分10
8秒前
王珩安发布了新的文献求助10
8秒前
8秒前
suibiao发布了新的文献求助10
8秒前
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
9秒前
思源应助勤劳蜜蜂采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
小龙发布了新的文献求助10
9秒前
所所应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835634
求助须知:如何正确求助?哪些是违规求助? 3378015
关于积分的说明 10501548
捐赠科研通 3097632
什么是DOI,文献DOI怎么找? 1705876
邀请新用户注册赠送积分活动 820756
科研通“疑难数据库(出版商)”最低求助积分说明 772245