失调
脂肪变性
肠道菌群
内分泌学
内科学
化学
碱性磷酸酶
人口
胆汁酸
生物
生物化学
酶
医学
环境卫生
作者
Chu Zhang,Wang Gui,Xin Yin,Lingshan Gou,Meng-Yuan Guo,Lingshan Gou,Tao Zhuang,Zhenya Yuan,Ya�nan Liu,Maosheng Gu,Ruiqin Yao
标识
DOI:10.1016/j.jpha.2024.100976
摘要
Intestinal dysbiosis and disrupted bile acid (BA) homeostasis are associated with obesity, but the precise mechanisms remain insufficiently explored. Hepatic protein phosphatase 1 regulatory subunit 3G (PPP1R3G) plays a pivotal role in regulating glycolipid metabolism; nevertheless, its obesity-combatting potency remains unclear. In this study, a substantial reduction was observed in serum PPP1R3G levels in high-body mass index and high-fat diet (HFD)-exposed mice, establishing a positive correlation between PPP1R3G and non-12α-hydroxylated (non-12-OH) BA content. Additionally, hepatocyte-specific overexpression of Ppp1r3g (PPP1R3G HOE) mitigated HFD-induced obesity as evidenced by reduced weight and fat mass, and an improved serum lipid profile; hepatic steatosis alleviation was confirmed by normalized liver enzymes and histology. PPP1R3G HOE considerably impacted systemic BA homeostasis, which notably increased the non-12-OH BAs ratio, particularly lithocholate (LCA). 16S ribosomal DNA (16S rDNA) sequencing assay indicated that PPP1R3G HOE reversed HFD-induced gut dysbiosis by reducing the Firmicutes/Bacteroidetes ratio and Lactobacillus population, and elevating the relative abundance of Blautia, which exhibited a positive correlation with serum LCA levels. A fecal microbiome transplantation test confirmed that the anti-obesity effect of hepatic PPP1R3G was gut microbiota-dependent. Mechanistically, PPP1R3G HOE markedly suppressed hepatic cholesterol 7α-hydroxylase and sterol-12α-hydroxylase, and concurrently upregulated oxysterol 7-α hydroxylase and Takeda G protein-coupled receptor 5 expression under HFD conditions. Furthermore, LCA administration significantly mitigated the HFD-induced obesity phenotype and elevated non-12-OH BA levels. These findings emphasize the significance of hepatic PPP1R3G in ameliorating diet-induced adiposity and hepatic steatosis through the gut microbiota-BA axis, which may serve as potential therapeutic targets for obesity-related disorders.
科研通智能强力驱动
Strongly Powered by AbleSci AI