Changes in performance and thermal stability of Ni0.8Co0.1Al0.1/graphite batteries with excessive water

石墨 热稳定性 材料科学 理论(学习稳定性) 热的 热力学 核工程 工程物理 化学工程 冶金 物理 计算机科学 工程类 机器学习
作者
Xi Liu,Jingbo Mao,Hongtao Yan,Chunjing Lin,Chuang Qi,Tao Yan,Li Lao,Yazhou Sun
出处
期刊:IET energy systems integration [Institution of Engineering and Technology]
被引量:1
标识
DOI:10.1049/esi2.12148
摘要

Abstract During the production process of lithium‐ion batteries, there exists a scenario of excessive water inside the battery due to poor water control in the factory environment. In addition, the battery housing may be damaged by corrosion, external vibration etc., which would cause water to enter the battery. To the best of the authors’ knowledge, there is little literature to reveal the influencing mechanism related to the above issue. The effects of excessive water on battery performance and safety were discussed. The results show that when the battery absorbs excessive water, the capacity decreases and the self‐discharging rate increases rapidly. The self‐heating temperature of the battery shows an increasing trend. The thermal runaway temperature decreases significantly with the time from self‐heating to thermal runaway dramatically shortened. The thermal stability of the battery deteriorates throughout the reaction process. This is mainly due to the mechanisms by which the water absorbed in the battery reacts with the electrolyte and the electrode material, resulting in the decrease of the electrolyte conductivity and the corrosion of the electrode material, as well as the thickening of the Solid Electrolyte Interface film and the accumulation of impurities. The findings are of positive significance in demonstrating the quantitative relationship between excessive water and the performance and safety of batteries. Also, it can add to the understanding of the complex scenarios of battery spontaneous failure, which is vital for solving battery self‐thermal runaways.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不赖床的科研狗完成签到,获得积分10
1秒前
lbh完成签到,获得积分10
2秒前
5秒前
怦然心动完成签到,获得积分10
7秒前
8秒前
许七安完成签到,获得积分10
10秒前
传奇3应助淡淡夕阳采纳,获得10
10秒前
ggg关闭了ggg文献求助
10秒前
熊猫侠发布了新的文献求助10
11秒前
丘比特应助怦然心动采纳,获得10
12秒前
Wmmmmm完成签到,获得积分10
12秒前
光轮2000完成签到 ,获得积分10
13秒前
月涵完成签到 ,获得积分10
15秒前
pepco完成签到 ,获得积分10
15秒前
ding应助老阳采纳,获得10
16秒前
wanidamm完成签到,获得积分10
16秒前
锅包肉完成签到 ,获得积分10
18秒前
21秒前
22秒前
xxddw发布了新的文献求助10
25秒前
26秒前
老阳发布了新的文献求助10
28秒前
28秒前
大鼻子的新四岁完成签到,获得积分10
30秒前
白冰发布了新的文献求助10
33秒前
怕孤单的觅波完成签到 ,获得积分20
34秒前
47秒前
打工人不酷完成签到 ,获得积分10
49秒前
51秒前
左孤容完成签到 ,获得积分10
52秒前
网友的科研日常完成签到,获得积分10
52秒前
大力美少女完成签到,获得积分10
54秒前
57秒前
科目三应助沉静的曼荷采纳,获得10
58秒前
超帅斑马发布了新的文献求助50
1分钟前
1分钟前
英雷完成签到,获得积分10
1分钟前
1分钟前
zer0完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777121
求助须知:如何正确求助?哪些是违规求助? 3322546
关于积分的说明 10210579
捐赠科研通 3037903
什么是DOI,文献DOI怎么找? 1666952
邀请新用户注册赠送积分活动 797871
科研通“疑难数据库(出版商)”最低求助积分说明 758059