亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cross co-teaching for semi-supervised medical image segmentation

计算机科学 分割 判别式 人工智能 Boosting(机器学习) 网络拓扑 机器学习 半监督学习 任务(项目管理) 图像分割 模式识别(心理学) 操作系统 经济 管理
作者
Fan Zhang,Huiying Liu,Jinjiang Wang,Jun Lyu,Qing Cai,Huafeng Li,Junyu Dong,David Zhang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:152: 110426-110426 被引量:9
标识
DOI:10.1016/j.patcog.2024.110426
摘要

Excellent performance has been achieved on semi-supervised medical image segmentation, but existing algorithms perform relatively poorly for objects with variable topologies and weak boundaries. In this paper, we propose a novel cross co-teaching framework, called Cross-structure-task Collaborative Teaching (CroCT), which not only can effectively handle variable topologies, but also strengthens the learning for weak boundaries of unlabeled data. Specifically, a new cross-structure-task collaborative teaching mechanism is developed based on our designed "E-Net" structure composed of a shared encoder and two decoder branches with distinct learning paradigms, which asks these two branches to regress topology-aware signed distance functions and densely-predicted segmentation masks for each other. Powered by the collaboration across different structural biases and sequence-related tasks, our CroCT can extract more discriminative yet complementary representations from abundant raw medical data to promote the consistency learning generalization, further boosting the performance for tackling highly diverse shapes and topological changes intra-/inter-slices. Besides, it guarantees the diversities from multi-levels, i.e., structure and task perspectives, to preclude prediction uncertainty. In addition, a novel adaptive boundary enhancing (ABE) module is proposed to introduce compact annularly enhanced boundary features into semi-supervised training, which significantly improves weak boundary perception ability for unlabeled data while facilitating collaborative teaching for efficiently propagating complementary knowledge across different branches. The extensive experiments on three challenging medical benchmarks, employing different labeled settings, demonstrate the superiority of our CroCT over recent state-of-the-art competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
jhb完成签到,获得积分10
10秒前
子平完成签到 ,获得积分0
10秒前
一一完成签到 ,获得积分10
14秒前
15秒前
jack1511完成签到,获得积分10
16秒前
burrrrr完成签到,获得积分10
18秒前
18秒前
burrrrr发布了新的文献求助10
20秒前
wafo完成签到,获得积分10
23秒前
23秒前
30秒前
32秒前
复杂的雨旋应助burrrrr采纳,获得20
32秒前
COSMAO应助cwqcqw采纳,获得10
34秒前
凉白开发布了新的文献求助10
35秒前
半城微凉完成签到,获得积分10
36秒前
38秒前
在水一方应助嗯对采纳,获得10
44秒前
48秒前
张桓完成签到,获得积分10
49秒前
LI完成签到,获得积分20
50秒前
HY完成签到 ,获得积分10
50秒前
萧水白完成签到,获得积分10
54秒前
54秒前
量子星尘发布了新的文献求助10
55秒前
57秒前
domingo发布了新的文献求助10
59秒前
SciGPT应助科研通管家采纳,获得10
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
欣喜书易完成签到 ,获得积分10
1分钟前
领导范儿应助成就的书包采纳,获得10
1分钟前
LI关注了科研通微信公众号
1分钟前
科研通AI5应助DaiLinxi采纳,获得30
1分钟前
余念安完成签到 ,获得积分10
1分钟前
高高菠萝完成签到 ,获得积分10
1分钟前
1分钟前
zyj完成签到,获得积分10
1分钟前
大力发布了新的文献求助10
1分钟前
domingo发布了新的文献求助10
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
War and Peace in the Borderlands of Myanmar: The Kachin Ceasefire, 1994-2011 800
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4142495
求助须知:如何正确求助?哪些是违规求助? 3678723
关于积分的说明 11627618
捐赠科研通 3372389
什么是DOI,文献DOI怎么找? 1852347
邀请新用户注册赠送积分活动 915140
科研通“疑难数据库(出版商)”最低求助积分说明 829661