MM-Net: A MixFormer-Based Multi-Scale Network for Anatomical and Functional Image Fusion

图像融合 计算机科学 人工智能 融合 模式识别(心理学) 特征(语言学) 融合规则 源代码 一般化 水准点(测量) 图像(数学) 领域(数学分析) 比例(比率) 数学 哲学 语言学 物理 量子力学 数学分析 大地测量学 地理 操作系统
作者
Yü Liu,Chen Yu,Juan Cheng,Z. Jane Wang,Xun Chen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 2197-2212 被引量:8
标识
DOI:10.1109/tip.2024.3374072
摘要

Anatomical and functional image fusion is an important technique in a variety of medical and biological applications. Recently, deep learning (DL)-based methods have become a mainstream direction in the field of multi-modal image fusion. However, existing DL-based fusion approaches have difficulty in effectively capturing local features and global contextual information simultaneously. In addition, the scale diversity of features, which is a crucial issue in image fusion, often lacks adequate attention in most existing works. In this paper, to address the above problems, we propose a MixFormer-based multi-scale network, termed as MM-Net, for anatomical and functional image fusion. In our method, an improved MixFormer-based backbone is introduced to sufficiently extract both local features and global contextual information at multiple scales from the source images. The features from different source images are fused at multiple scales based on a multi-source spatial attention-based cross-modality feature fusion (CMFF) module. The scale diversity of the fused features is further enriched by a series of multi-scale feature interaction (MSFI) modules and feature aggregation upsample (FAU) modules. Moreover, a loss function consisting of both spatial domain and frequency domain components is devised to train the proposed fusion model. Experimental results demonstrate that our method outperforms several state-of-the-art fusion methods on both qualitative and quantitative comparisons, and the proposed fusion model exhibits good generalization capability. The source code of our fusion method will be available at https://github.com/yuliu316316.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助LPL采纳,获得10
1秒前
1秒前
彭于晏应助Cecilia采纳,获得30
2秒前
2秒前
3秒前
隐形曼青应助认真的海豚采纳,获得10
5秒前
CodeCraft应助青柏采纳,获得10
5秒前
鳗鱼如松发布了新的文献求助10
5秒前
柔弱熊猫发布了新的文献求助10
7秒前
尽欢发布了新的文献求助10
8秒前
cc发布了新的文献求助10
9秒前
9秒前
11秒前
曲奇不甜完成签到 ,获得积分10
11秒前
12秒前
姜茶完成签到 ,获得积分10
13秒前
13秒前
鳗鱼如松完成签到,获得积分10
14秒前
16秒前
所所应助朴素易烟采纳,获得10
17秒前
18秒前
18秒前
非鱼鱼发布了新的文献求助10
19秒前
19秒前
小炮仗完成签到 ,获得积分10
19秒前
CodeCraft应助生动曼冬采纳,获得10
19秒前
red发布了新的文献求助10
20秒前
21秒前
21秒前
科目三应助研友_闾丘枫采纳,获得10
22秒前
22秒前
李健的小迷弟应助泥花采纳,获得10
22秒前
wuuToiiin完成签到,获得积分10
23秒前
23秒前
orixero应助red采纳,获得10
23秒前
imaginary发布了新的文献求助10
25秒前
25秒前
25秒前
25秒前
26秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800187
求助须知:如何正确求助?哪些是违规求助? 3345479
关于积分的说明 10325346
捐赠科研通 3061960
什么是DOI,文献DOI怎么找? 1680695
邀请新用户注册赠送积分活动 807172
科研通“疑难数据库(出版商)”最低求助积分说明 763539