代谢工程
萜类
合成生物学
代谢途径
生物
萜烯
计算生物学
系统生物学
生物化学
生物技术
新陈代谢
基因
作者
Megha Kumari,Vibha G. Checker,Renu Kathpalia,Vikas Srivastava,Indrakant K. Singh,Archana Singh
标识
DOI:10.1016/j.plaphy.2024.108511
摘要
Terpenoids are a vast class of plant specialized metabolites (PSMs) manufactured by plants and are involved in their interactions with environment. In addition, they add health benefits to human nutrition and are widely used as pharmaceutically active compounds. However, native plants produce a limited amount of terpenes restricting metabolite yield of terpene-related metabolites. Exponential growth in the plant metabolome data and the requirement of alternative approaches for producing the desired amount of terpenoids, has redirected plant biotechnology research to plant metabolic engineering, which requires in-depth knowledge and precise expertise about dynamic plant metabolic pathways and cellular physiology. Metabolic engineering is an assuring tool for enhancing the concentration of terpenes by adopting specific strategies such as overexpression of the key genes associated with the biosynthesis of targeted metabolites, controlling the modulation of transcription factors, downregulation of competitive pathways (RNAi), co-expression of the biosynthetic pathway genes in heterologous system and other combinatorial approaches. Microorganisms, fast-growing host plants (such as Nicotiana benthamiana), and cell suspension/callus cultures have provided better means for producing valuable terpenoids. Manipulation in the biosynthetic pathways responsible for synthesis of terpenoids can provide opportunities to enhance the content of desired terpenoids and open up new avenues to enhance their production. This review deliberates the worth of metabolic engineering in medicinal plants to resolve issues associated with terpenoid production at a commercial scale. However, to bring the revolution through metabolic engineering, further implementation of genome editing, elucidation of metabolic pathways using omics approaches, system biology approaches, and synthetic biology tactics are essentially needed.
科研通智能强力驱动
Strongly Powered by AbleSci AI