亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accelerated innovation in developing high-performance metal halide perovskite solar cell using machine learning

带隙 钙钛矿(结构) 卤化物 计算机科学 材料科学 钙钛矿太阳能电池 能量转换效率 光电子学 人工智能 算法 工程物理 机器学习 物理 化学 化学工程 工程类 无机化学
作者
Anjan Kumar,Sangeeta Singh,Mustafa K. A. Mohammed,Dilip Kumar Sharma
出处
期刊:International Journal of Modern Physics B [World Scientific]
卷期号:37 (07) 被引量:17
标识
DOI:10.1142/s0217979223500674
摘要

The invention of novel light-harvesting materials is one of the primary reasons behind the acceleration of current scientific advancement and technological innovation in the solar sector. Organometal halide perovskite (OHP) has recently attracted a great deal of interest because of the high-energy conversion efficiency that has reached within a few years of its discovery and development. Modern machine learning (ML) technology is quickly advancing in a variety of fields, providing blueprints for the discovery and rational design of new and improved material properties. In this paper, we apply ML to optimize the material composition of OHPs, propose design methods and forecast their performance. Our ML model is built using 285 datasets that were taken from about 700 experimental articles. We have developed two different ML models to predict the bandgap and performance parameters of solar cell. In the first model, we employed three ML algorithms to investigate the relationship between bandgap and perovskite material composition. We estimated the performance characteristics using projected and actual bandgap. Second, ML models are used to predict the performance parameters employing the bandgap of perovskite and energy difference between electron transport layer (ETL) and hole transport layer (HTL) with perovskite as an input parameter. Simulation results suggest that the artificial neural network (ANN) technique, which predicts the bandgap by taking into consideration how cations and halide ions interact with one another, demonstrates a better degree of accuracy (with a Pearson coefficient of 0.91 and root mean square error of 0.059). The constructed ML model closely fits the theoretical prediction made by Shockley and Queisser, and that is almost hard for a person to discover from an aggregation of datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dida完成签到,获得积分10
2秒前
丰富惊蛰完成签到 ,获得积分10
32秒前
潘振玄完成签到,获得积分10
40秒前
ceeray23应助科研通管家采纳,获得10
55秒前
潘振玄发布了新的文献求助10
59秒前
1分钟前
1分钟前
1分钟前
邢契发布了新的文献求助10
1分钟前
丘比特应助芋泥采纳,获得10
1分钟前
邢契完成签到,获得积分10
2分钟前
星际舟完成签到,获得积分10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
奈思完成签到 ,获得积分10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
5分钟前
5分钟前
务实的犀牛完成签到,获得积分10
5分钟前
6分钟前
默默善愁发布了新的文献求助30
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
110o发布了新的文献求助10
6分钟前
SciGPT应助默默善愁采纳,获得10
6分钟前
110o发布了新的文献求助10
7分钟前
110o完成签到,获得积分10
7分钟前
深情的楷瑞完成签到 ,获得积分10
8分钟前
故酒应助科研通管家采纳,获得10
8分钟前
我是老大应助科研通管家采纳,获得10
8分钟前
幸运的姜姜完成签到 ,获得积分10
9分钟前
zsmj23完成签到 ,获得积分0
9分钟前
10分钟前
默默善愁发布了新的文献求助10
10分钟前
Akim应助科研通管家采纳,获得10
10分钟前
ceeray23应助科研通管家采纳,获得10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5186784
求助须知:如何正确求助?哪些是违规求助? 4371864
关于积分的说明 13612642
捐赠科研通 4224592
什么是DOI,文献DOI怎么找? 2317098
邀请新用户注册赠送积分活动 1315749
关于科研通互助平台的介绍 1265057