Accelerated innovation in developing high-performance metal halide perovskite solar cell using machine learning

带隙 钙钛矿(结构) 卤化物 计算机科学 材料科学 钙钛矿太阳能电池 能量转换效率 光电子学 人工智能 算法 工程物理 机器学习 物理 化学 化学工程 工程类 无机化学
作者
Anjan Shah,Sangeeta Singh,Mohammed Al‐Bahrani,Dilip Kumar Sharma
出处
期刊:International Journal of Modern Physics B [World Scientific]
卷期号:37 (07) 被引量:15
标识
DOI:10.1142/s0217979223500674
摘要

The invention of novel light-harvesting materials is one of the primary reasons behind the acceleration of current scientific advancement and technological innovation in the solar sector. Organometal halide perovskite (OHP) has recently attracted a great deal of interest because of the high-energy conversion efficiency that has reached within a few years of its discovery and development. Modern machine learning (ML) technology is quickly advancing in a variety of fields, providing blueprints for the discovery and rational design of new and improved material properties. In this paper, we apply ML to optimize the material composition of OHPs, propose design methods and forecast their performance. Our ML model is built using 285 datasets that were taken from about 700 experimental articles. We have developed two different ML models to predict the bandgap and performance parameters of solar cell. In the first model, we employed three ML algorithms to investigate the relationship between bandgap and perovskite material composition. We estimated the performance characteristics using projected and actual bandgap. Second, ML models are used to predict the performance parameters employing the bandgap of perovskite and energy difference between electron transport layer (ETL) and hole transport layer (HTL) with perovskite as an input parameter. Simulation results suggest that the artificial neural network (ANN) technique, which predicts the bandgap by taking into consideration how cations and halide ions interact with one another, demonstrates a better degree of accuracy (with a Pearson coefficient of 0.91 and root mean square error of 0.059). The constructed ML model closely fits the theoretical prediction made by Shockley and Queisser, and that is almost hard for a person to discover from an aggregation of datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
camellia完成签到 ,获得积分10
刚刚
韩羽丰完成签到,获得积分10
1秒前
斯文败类应助或无情采纳,获得10
1秒前
lee完成签到 ,获得积分20
1秒前
啦啦啦啦啦啦啦完成签到,获得积分10
2秒前
科研通AI5应助wwl采纳,获得10
2秒前
如意听安完成签到,获得积分10
2秒前
HEAUBOOK应助11采纳,获得10
3秒前
3秒前
饱满棒棒糖完成签到,获得积分10
3秒前
奋斗的橘子完成签到,获得积分10
4秒前
吃不胖的阿吴完成签到,获得积分10
4秒前
4秒前
柚柚完成签到,获得积分20
4秒前
4秒前
赘婿应助ihtw采纳,获得10
4秒前
4秒前
Teko完成签到,获得积分10
5秒前
Joseph完成签到,获得积分10
5秒前
懒大王完成签到,获得积分10
5秒前
汪锦程发布了新的文献求助10
5秒前
6秒前
wanci应助爱听歌的依秋采纳,获得30
6秒前
6秒前
王进完成签到,获得积分10
6秒前
7秒前
YOP完成签到,获得积分10
7秒前
谷策发布了新的文献求助20
7秒前
不安士晋发布了新的文献求助10
7秒前
阿毛完成签到,获得积分10
7秒前
廾匸发布了新的文献求助10
8秒前
8秒前
英俊的铭应助CC采纳,获得10
8秒前
9秒前
boldhammer发布了新的文献求助10
9秒前
楼丶完成签到,获得积分10
9秒前
北彧发布了新的文献求助10
10秒前
11秒前
xol发布了新的文献求助10
11秒前
乐观的香菱完成签到,获得积分10
11秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805810
求助须知:如何正确求助?哪些是违规求助? 3350734
关于积分的说明 10350610
捐赠科研通 3066591
什么是DOI,文献DOI怎么找? 1683999
邀请新用户注册赠送积分活动 809197
科研通“疑难数据库(出版商)”最低求助积分说明 765407