Improving above ground biomass estimates of Southern Africa dryland forests by combining Sentinel-1 SAR and Sentinel-2 multispectral imagery

多光谱图像 遥感 基本事实 环境科学 合成孔径雷达 随机森林 卫星 卫星图像 地理 计算机科学 机器学习 工程类 航空航天工程
作者
Ruusa Magano David,Nick Rosser,Daniel N.M. Donoghue
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:282: 113232-113232 被引量:75
标识
DOI:10.1016/j.rse.2022.113232
摘要

Having the ability to make accurate assessments of above ground biomass (AGB) at high spatial resolution is invaluable for the management of dryland forest resources in areas at risk from deforestation, forest degradation pressure and climate change impacts. This study reports on the use of satellite-based synthetic-aperture radar (SAR) and multispectral imagery for estimating AGB by correlating satellite observations with ground truth data collected on forest plots from dryland forests in the Chobe National Park, Botswana. We undertook nineteen quantitative experiments with Sentinel-1 (S1), and Sentinel-2 (S2) and tested simple and multivariate regression including parametric (linear) and non-parametric (random forests) algorithms, to explore the optimal approaches for AGB estimation. The largest AGB value of 145 Mg/ha was found in northern Chobe while a large part of the study area (85%) is characterized by low AGB values (< 80 Mg/ha), with an average estimated at 51 Mg/ha. The results show that the AGB estimated using SAR backscatter values from vertical transmit receive (VV) polarization is more accurate than that based on horizontal receive (VH) polarization, accounting for 58% of the variance compared to 32%. Nevertheless, the combination of S1 SAR and S2 multispectral image data produced the best fit to the ground observations for dryland forests explaining 83% of the variance with an accuracy of 89%. Furthermore, the optimal AGB model performance was achieved with a random forest (RF) regression trees algorithm using S1 (SAR) and S2 (multispectral) image data (R2 = 0.95; RMSE = 0.25 Mg/ha). From the 11 vegetation indices tested, GNDVI, Normalized Difference Red Edge (NDRE1), and NDVI obtained the highest linear relationship with AGB (R2 = 0.71 and R2 = 0.56, p < 0.001), however, GNDVI and NDRE1 improved the AGB estimation at medium to high-density forests compared to NDVI. The GRVI and EVI were the least correlated with AGB (R2 = 0.09 and R2 = 0.31) at a significance level of p < 0.001, respectively. We show that NDVI saturates in areas with >80 Mg/ha AGB, whereas the inclusion of SAR backscatter and optical red edge bands (B5) significantly reduces saturation effects in areas of high biomass. GNDVI and red edge (B5) derived vegetation indices have more potential for estimating AGB in dryland forests than NDVI. Our results demonstrate that dryland AGB can be estimated with a reasonable level of precision from open access Earth observation data using multivariate random forest regression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李扬完成签到,获得积分10
刚刚
烟花应助复杂的乐驹采纳,获得10
1秒前
123keyan完成签到,获得积分10
1秒前
司徒梨愁完成签到,获得积分10
2秒前
恩恩发布了新的文献求助10
2秒前
打打应助木冉采纳,获得10
2秒前
XUAN发布了新的文献求助10
5秒前
司徒梨愁发布了新的文献求助10
5秒前
ilzhuzhu完成签到,获得积分10
6秒前
6秒前
我来找文献完成签到,获得积分10
6秒前
7秒前
李爱国应助mm采纳,获得10
7秒前
哈哈哈发布了新的文献求助10
8秒前
8秒前
M3L2完成签到,获得积分10
8秒前
sxy应助dzx采纳,获得10
8秒前
喜多米430完成签到,获得积分10
9秒前
粉色娇嫩完成签到,获得积分10
11秒前
淡淡涫发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
12秒前
yangyj发布了新的文献求助10
12秒前
Siqi发布了新的文献求助10
13秒前
13秒前
科目三应助阳光采纳,获得10
15秒前
愉快的真应助PageWan采纳,获得30
15秒前
16秒前
7ohnny完成签到,获得积分10
16秒前
16秒前
fin完成签到,获得积分10
17秒前
NIUBEN发布了新的文献求助10
17秒前
苗子完成签到,获得积分10
17秒前
酷炫翠桃完成签到,获得积分10
18秒前
芝麻酱完成签到,获得积分10
19秒前
19秒前
7ohnny发布了新的文献求助10
20秒前
清风完成签到 ,获得积分10
20秒前
21秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3876491
求助须知:如何正确求助?哪些是违规求助? 3419060
关于积分的说明 10711994
捐赠科研通 3143759
什么是DOI,文献DOI怎么找? 1734578
邀请新用户注册赠送积分活动 836852
科研通“疑难数据库(出版商)”最低求助积分说明 782835