Modeling phytoremediation of heavy metal contaminated soils through machine learning

植物修复 污染 土壤水分 土壤污染 重金属 环境科学 植物提取工艺 环境化学 环境工程 采矿工程 超量积累植物 地质学 化学 土壤科学 生态学 生物
作者
Liang Shi,Jie Li,Kumuduni Niroshika Palansooriya,Yahua Chen,Deyi Hou,Erik Meers,Daniel C.W. Tsang,Xiaonan Wang,Yong Sik Ok
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:441: 129904-129904 被引量:91
标识
DOI:10.1016/j.jhazmat.2022.129904
摘要

As an important subtopic within phytoremediation, hyperaccumulators have garnered significant attention due to their ability of super-enriching heavy metals. Identifying the factors that affecting phytoextraction efficiency has important application value in guiding the efficient remediation of heavy metal contaminated soil. However, it is challenging to identify the critical factors that affect the phytoextraction of heavy metals in soil-hyperaccumulator ecosystems because the current projections on phytoremediation extrapolations are rudimentary at best using simple linear models. Here, machine learning (ML) approaches were used to predict the important factors that affecting phytoextraction efficiency of hyperaccumulators. ML analysis was based on 173 data points with consideration of soil properties, experimental conditions, plant families, low-molecular-weight organic acids from plants, plant genes, and heavy metal properties. Heavy metal properties, especially the metal ion radius, were the most important factors that affect heavy metal accumulation in shoots, and the plant family was the most important factor that affect the bioconcentration factor, metal extraction ratio, and remediation time. Furthermore, the Crassulaceae family had the highest potential as hyperaccumulators for phytoremediation, which was related to the expression of genes encoding heavy metal transporting ATPase (HMA), Metallothioneins (MTL), and natural resistance associated macrophage protein (NRAMP), and also the secretion of malate and threonine. New insights into the effects of plant characteristics, experimental conditions, soil characteristics, and heavy metal properties on phytoextraction efficiency from ML model interpretation could guide the efficient phytoremediation by identifying the best hyperaccumulators and resolving its efficient remediation mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SciGPT应助亓昂采纳,获得10
1秒前
上官若男应助活泼的安柏采纳,获得10
1秒前
某某1发布了新的文献求助10
1秒前
zheng_chen发布了新的文献求助30
1秒前
俭朴夜香应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
馆长应助科研通管家采纳,获得30
3秒前
Jasper应助贝林7采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
Iris应助科研通管家采纳,获得10
3秒前
3秒前
wanci应助科研通管家采纳,获得20
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
Zheng发布了新的文献求助10
5秒前
5秒前
6秒前
8秒前
zgd完成签到,获得积分10
8秒前
丽儿发布了新的文献求助10
10秒前
科研通AI6应助Zheng采纳,获得10
11秒前
12秒前
吡嗪发布了新的文献求助10
13秒前
社会主义接班人完成签到 ,获得积分10
14秒前
科研白发布了新的文献求助10
16秒前
稽TR完成签到,获得积分10
19秒前
HongMou完成签到 ,获得积分10
19秒前
21秒前
22秒前
深情的煜城完成签到,获得积分10
22秒前
Zoe完成签到,获得积分10
23秒前
一拳一个小欧阳完成签到 ,获得积分10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4537055
求助须知:如何正确求助?哪些是违规求助? 3972128
关于积分的说明 12305419
捐赠科研通 3638852
什么是DOI,文献DOI怎么找? 2003525
邀请新用户注册赠送积分活动 1038901
科研通“疑难数据库(出版商)”最低求助积分说明 928336