清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Modeling phytoremediation of heavy metal contaminated soils through machine learning

植物修复 污染 土壤水分 土壤污染 重金属 环境科学 植物提取工艺 环境化学 环境工程 采矿工程 超量积累植物 地质学 化学 土壤科学 生态学 生物
作者
Liang Shi,Jie Li,Kumuduni Niroshika Palansooriya,Yahua Chen,Deyi Hou,Erik Meers,Daniel C.W. Tsang,Xiaonan Wang,Yong Sik Ok
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:441: 129904-129904 被引量:73
标识
DOI:10.1016/j.jhazmat.2022.129904
摘要

As an important subtopic within phytoremediation, hyperaccumulators have garnered significant attention due to their ability of super-enriching heavy metals. Identifying the factors that affecting phytoextraction efficiency has important application value in guiding the efficient remediation of heavy metal contaminated soil. However, it is challenging to identify the critical factors that affect the phytoextraction of heavy metals in soil-hyperaccumulator ecosystems because the current projections on phytoremediation extrapolations are rudimentary at best using simple linear models. Here, machine learning (ML) approaches were used to predict the important factors that affecting phytoextraction efficiency of hyperaccumulators. ML analysis was based on 173 data points with consideration of soil properties, experimental conditions, plant families, low-molecular-weight organic acids from plants, plant genes, and heavy metal properties. Heavy metal properties, especially the metal ion radius, were the most important factors that affect heavy metal accumulation in shoots, and the plant family was the most important factor that affect the bioconcentration factor, metal extraction ratio, and remediation time. Furthermore, the Crassulaceae family had the highest potential as hyperaccumulators for phytoremediation, which was related to the expression of genes encoding heavy metal transporting ATPase (HMA), Metallothioneins (MTL), and natural resistance associated macrophage protein (NRAMP), and also the secretion of malate and threonine. New insights into the effects of plant characteristics, experimental conditions, soil characteristics, and heavy metal properties on phytoextraction efficiency from ML model interpretation could guide the efficient phytoremediation by identifying the best hyperaccumulators and resolving its efficient remediation mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海洋岩土12138完成签到 ,获得积分10
5秒前
13秒前
18秒前
SciGPT应助贪玩钢铁侠采纳,获得10
24秒前
1分钟前
乐乐完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Noah完成签到 ,获得积分0
1分钟前
简奥斯汀完成签到 ,获得积分10
1分钟前
无悔完成签到 ,获得积分10
1分钟前
搜集达人应助Tethys采纳,获得10
1分钟前
温暖坚定完成签到 ,获得积分10
2分钟前
2分钟前
Tethys发布了新的文献求助10
2分钟前
呆萌的语芹完成签到,获得积分10
2分钟前
蚂蚁踢大象完成签到 ,获得积分10
2分钟前
大胆的小懒猪完成签到 ,获得积分10
3分钟前
胃是内分泌器官完成签到,获得积分10
3分钟前
希望天下0贩的0应助automan采纳,获得10
3分钟前
浚稚完成签到 ,获得积分10
3分钟前
ding应助细心的语蓉采纳,获得30
3分钟前
3分钟前
3分钟前
automan发布了新的文献求助10
3分钟前
3分钟前
automan完成签到,获得积分10
3分钟前
桐桐应助火焰向上采纳,获得10
4分钟前
zzhui完成签到,获得积分10
4分钟前
4分钟前
nihaoxjm发布了新的文献求助10
4分钟前
李志全完成签到 ,获得积分10
5分钟前
老实皮卡丘完成签到 ,获得积分10
5分钟前
雪白的面包完成签到 ,获得积分10
5分钟前
小西完成签到 ,获得积分10
5分钟前
space完成签到 ,获得积分10
5分钟前
5分钟前
SciGPT应助细心的语蓉采纳,获得10
5分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784818
求助须知:如何正确求助?哪些是违规求助? 3330065
关于积分的说明 10244270
捐赠科研通 3045410
什么是DOI,文献DOI怎么找? 1671678
邀请新用户注册赠送积分活动 800597
科研通“疑难数据库(出版商)”最低求助积分说明 759524