Internal and external validation of machine learning–assisted prediction models for mechanical ventilation–associated severe acute kidney injury

医学 机械通风 急性肾损伤 接收机工作特性 重症监护室 置信区间 逻辑回归 队列 多元分析 重症监护 多元统计 急诊医学 重症监护医学 内科学 机器学习 计算机科学
作者
Sai Huang,Yue Teng,Jiajun Du,Xuan Zhou,Duan Feng,Cong Feng
出处
期刊:Australian Critical Care [Elsevier BV]
卷期号:36 (4): 604-612 被引量:4
标识
DOI:10.1016/j.aucc.2022.06.001
摘要

Abstract

Background

Currently, very few preventive or therapeutic strategies are used for mechanical ventilation (MV)-associated severe acute kidney injury (AKI).

Objectives

We developed clinical prediction models to detect the onset of severe AKI in the first week of intensive care unit (ICU) stay during the initiation of MV.

Methods

A large ICU database Medical Information Mart for Intensive Care IV (MIMIC-IV) was analysed retrospectively. Data were collected from the clinical information recorded at the time of ICU admission and during the initial 12 h of MV. Using univariate and multivariate analyses, the predictors were selected successively. For model development, two machine learning algorithms were compared. The primary goal was to predict the development of AKI stage 2 or 3 (AKI-23) and AKI stage 3 (AKI-3) in the first week of patients' ICU stay after initial 12 h of MV. The developed models were externally validated using another multicentre ICU database (eICU Collaborative Research Database, eICU) and evaluated in various patient subpopulations.

Results

Models were developed using data from the development cohort (MIMIC-IV: 2008–2016; n = 3986); the random forest algorithm outperformed the logistic regression algorithm. In the internal (MIMIC-IV: 2017–2019; n = 1210) and external (eICU; n = 1494) validation cohorts, the incidences of AKI-23 were 154 (12.7%) and 119 (8.0%), respectively, with areas under the receiver operator characteristic curve of 0.78 (95% confidence interval [CI]: 0.74–0.82) and 0.80 (95% CI: 0.76–0.84); the incidences of AKI-3 were 81 (6.7%) and 67 (4.5%), with areas under the receiver operator characteristic curve of 0.81 (95% CI: 0.76–0.87) and 0.80 (95% CI: 0.73–0.86), respectively.

Conclusions

Models driven by machine learning and based on routine clinical data may facilitate the early prediction of MV-associated severe AKI. The validated models can be found at: https://apoet.shinyapps.io/mv_aki_2021_v2/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
骤雨时晴完成签到 ,获得积分10
1秒前
卡尔拉完成签到,获得积分10
2秒前
Fazie完成签到 ,获得积分10
2秒前
4秒前
三国杀启动完成签到,获得积分10
4秒前
LZL完成签到 ,获得积分10
5秒前
吴晨曦发布了新的文献求助10
5秒前
6秒前
复杂的可乐完成签到 ,获得积分10
7秒前
Pool完成签到 ,获得积分10
7秒前
晚星完成签到,获得积分10
7秒前
9秒前
刘七岁完成签到,获得积分10
9秒前
用师兄单身换论文必中完成签到,获得积分10
10秒前
从容谷菱发布了新的文献求助10
11秒前
吴晨曦完成签到,获得积分10
11秒前
飞雪完成签到,获得积分10
11秒前
熊熊发布了新的文献求助10
14秒前
贺贺完成签到,获得积分10
14秒前
Miranda发布了新的文献求助10
15秒前
科研通AI5应助文献狂人采纳,获得10
15秒前
CipherSage应助1111222333采纳,获得10
18秒前
风中书易完成签到,获得积分10
18秒前
18秒前
尖叫尖叫完成签到 ,获得积分10
19秒前
20秒前
20秒前
21秒前
小饭团子发布了新的文献求助20
21秒前
张六六完成签到 ,获得积分10
22秒前
叶痕TNT完成签到 ,获得积分10
22秒前
23秒前
典雅的夜安完成签到,获得积分10
24秒前
华仔应助Gray采纳,获得10
24秒前
25秒前
sybs完成签到,获得积分10
25秒前
黄晃晃完成签到,获得积分20
25秒前
li发布了新的文献求助30
26秒前
ju发布了新的文献求助10
26秒前
Orange应助大方的百川采纳,获得10
27秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801141
求助须知:如何正确求助?哪些是违规求助? 3346809
关于积分的说明 10330527
捐赠科研通 3063158
什么是DOI,文献DOI怎么找? 1681402
邀请新用户注册赠送积分活动 807549
科研通“疑难数据库(出版商)”最低求助积分说明 763728