石墨烯
抗菌剂
复合数
氧化物
机制(生物学)
可见光谱
材料科学
纳米技术
化学
化学工程
复合材料
光电子学
物理
有机化学
量子力学
工程类
作者
Biyun Li,Xiaoxiao Gao,Jiangang Qu,Feng Xiong,Hongyun Xuan,Yan Jin,Huihua Yuan
摘要
In this study, a photocatalytic antibacterial composite of polydopamine-reduced graphene oxide (PDA-rGO)/BiVO4 is prepared by a hydrothermal self-polymerization reduction method. Its morphology and physicochemical properties are characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared (FT-IR), and X-ray diffraction (XRD). The results indicate that BiVO4 particles are evenly distributed on the rGO surface. Escherichia coli (E. coli) MG1655 is selected as the model bacteria, and its antibacterial performance is tested by flat colony counting and the MTT method under light irradiation. PDA-rGO/BiVO4 inhibits the growth of E. coli under both light and dark conditions, and light significantly enhances the bacteriostasis of PDA-rGO/BiVO4. A combination of BiVO4 with PDA-rGO is confirmed by the above characterization methods as improving the photothermal performance under visible light irradiation. The composite possesses enhanced photocatalytic antibacterial activity. Additionally, the photocatalytic antibacterial mechanism is investigated via the morphology changes in the SEM images of MG1655 bacteria, 2′,7′-dichlorofluorescein diacetate (DCFH-DA), the fluorescence detection of the reactive oxygen species (ROS), and gene expression. These results show that PDA-rGO/BiVO4 can produce more ROS and lead to bacterial death. Subsequently, the q-PCR results show that the transmembrane transport of bacteria is blocked and the respiratory chain is inhibited. This study may provide an important strategy for expanding the application of BiVO4 in biomedicine and studying the photocatalytic antibacterial mechanism.
科研通智能强力驱动
Strongly Powered by AbleSci AI