A new data augmentation method for EEG features based on the hybrid model of broad-deep networks

计算机科学 脑电图 人工智能 特征(语言学) 相似性(几何) 集合(抽象数据类型) 模式识别(心理学) 度量(数据仓库) 数据集 数据挖掘 图像(数学) 心理学 语言学 哲学 精神科 程序设计语言
作者
Rongrong Fu,Yaodong Wang,Chengcheng Jia
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:202: 117386-117386 被引量:24
标识
DOI:10.1016/j.eswa.2022.117386
摘要

• A novel hybrid model of broad-deep networks is proposed for data augmentation. • The highly similar features can be merged to generate new augmented features. • The method solves the problem of insufficient authenticity of EEG generated by GAN. Decades after data augmentation was first proposed in brain-computer interface (BCI), the authenticity and performance still do not meet rational requirements, which is directly related to the fact that the augmentation methods do not provide real electroencephalograph (EEG) trials. Here we show how to generate a numerous authentic EEG from the original calibrated EEG by using a novel hybrid model of broad-deep networks, which eliminates the lack of authenticity of data generated by GAN and other methods. First, we design an EEG evoked experiment with a complex boundary avoidance task to collect the EEG of different subjects. This experiment can effectively highlight the differences of EEG features of different subjects that makes the results more reliable when using our novel hybrid model to measure the similarity. A new hybrid model of broad-deep networks is proposed to measure the similarity of different subjects in this study. And the EEG features of the two subjects with the highest similarity are combined to generate an augmented feature set. On the condition of satisfying the authenticity of EEG, the augmented feature set is significantly better than the original feature set in data dimension and quality. Finally, we verify the classification effect of the augmented feature set, and the results show that the proposed method can effectively generate real EEG data and improve the classification performance to a high reliability level for complex boundary avoidance tasks under limited EEG conditions. In addition, we observe the obvious advantages of this model over traditional deep learning methods in terms of training time and memory overhead.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小纯牛奶发布了新的文献求助10
1秒前
1秒前
HMF发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
尊敬亦寒发布了新的文献求助10
3秒前
pcy应助freedom采纳,获得10
3秒前
爆米花应助怡然的阑香采纳,获得10
4秒前
你好耀眼发布了新的文献求助10
4秒前
天蓬元帅发布了新的文献求助10
5秒前
111发布了新的文献求助10
5秒前
5秒前
Raymond应助妩媚的语蕊采纳,获得10
5秒前
ding应助妩媚的语蕊采纳,获得10
5秒前
懒大王关注了科研通微信公众号
6秒前
D_H发布了新的文献求助10
7秒前
852应助纯氧采纳,获得10
7秒前
7秒前
7秒前
bingbing发布了新的文献求助10
8秒前
Owen应助猪猪hero采纳,获得10
8秒前
落寞臻发布了新的文献求助10
8秒前
8秒前
yu完成签到,获得积分10
9秒前
Jonah完成签到,获得积分20
9秒前
慕青应助HMF采纳,获得10
9秒前
满意的夜柳完成签到,获得积分10
9秒前
memebao完成签到,获得积分10
10秒前
sctaaa发布了新的文献求助10
10秒前
一只狗东西完成签到 ,获得积分10
11秒前
dou发布了新的文献求助10
11秒前
11秒前
goldNAN发布了新的文献求助10
12秒前
12秒前
12秒前
你好耀眼完成签到,获得积分10
12秒前
张y完成签到,获得积分10
12秒前
13秒前
FBG发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4283740
求助须知:如何正确求助?哪些是违规求助? 3811700
关于积分的说明 11939673
捐赠科研通 3458062
什么是DOI,文献DOI怎么找? 1896511
邀请新用户注册赠送积分活动 945248
科研通“疑难数据库(出版商)”最低求助积分说明 848979