Early diagnosis and pathogenesis monitoring of wheat powdery mildew caused by blumeria graminis using hyperspectral imaging

白粉病 青梅 高光谱成像 主成分分析 人工智能 生物 遥感 模式识别(心理学) 计算机科学 农学 植物抗病性 地质学 生物化学 基因
作者
Guantao Xuan,Quankai Li,Yuanyuan Shao,Yukang Shi
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:197: 106921-106921 被引量:40
标识
DOI:10.1016/j.compag.2022.106921
摘要

Powdery mildew caused by blumeria graminis is responsible for wheat yield losses in combination with a decline in quality. Hyperspectral imaging as a promising non-invasive sensor technique has potential for early diagnosis and pathogenesis monitoring of wheat powdery mildew, which is a practice that allows for precision crop protection. Hyperspectral images were first captured before inoculation as healthy samples and daily 2 to 5 days after inoculation (dai) as infected ones. Principal component analysis (PCA) was applied to observe the discrimination capability between samples at different infected stages, while a gray-level co-occurrence matrix (GLCM) was used to extract textural features from the first three principal component images. Then partial least squares discriminant analysis (PLS-DA) model was developed to evaluate the ability for early diagnosis of the disease using effective wavelengths, texture features and their fusion, respectively. Compared with the models using spectral or textural feature alone, PLS-DA model using the fused dataset obtained the best performances with classification accuracy of 91.4 % in validation sets. Furthermore, spectral angle mapping (SAM) was performed to identify the infected tissue in wheat leaves 2 dai, and to monitor the pathogenesis of powdery mildew over time. The results from this study could be used to develop a portable field monitoring sensor for wheat powdery mildew.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
亮liang完成签到,获得积分10
刚刚
刚刚
luoye完成签到,获得积分10
刚刚
傅英俊发布了新的文献求助10
1秒前
1秒前
完美星落完成签到,获得积分10
2秒前
2秒前
4秒前
木子蕊完成签到,获得积分20
4秒前
搞份炸鸡778完成签到,获得积分10
4秒前
4秒前
胡胡完成签到 ,获得积分10
6秒前
ss完成签到 ,获得积分10
6秒前
YYMM发布了新的文献求助10
6秒前
tqim发布了新的文献求助10
7秒前
傅英俊完成签到,获得积分10
7秒前
沉溺发布了新的文献求助10
7秒前
8秒前
9秒前
Treasure发布了新的文献求助10
10秒前
科研通AI5应助独特的泽洋采纳,获得10
10秒前
77发布了新的文献求助20
10秒前
香蕉觅云应助环游世界采纳,获得10
10秒前
啾v咪完成签到 ,获得积分10
12秒前
kong发布了新的文献求助10
12秒前
12秒前
拉长的南松完成签到 ,获得积分10
13秒前
15秒前
yy完成签到,获得积分10
15秒前
困敦发布了新的文献求助10
15秒前
16秒前
Orange应助Zoe采纳,获得10
16秒前
17秒前
17秒前
18秒前
Memory完成签到,获得积分10
18秒前
syj完成签到,获得积分10
20秒前
20秒前
阿莫仙发布了新的文献求助10
20秒前
小贝发布了新的文献求助10
22秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814868
求助须知:如何正确求助?哪些是违规求助? 3358972
关于积分的说明 10398999
捐赠科研通 3076429
什么是DOI,文献DOI怎么找? 1689822
邀请新用户注册赠送积分活动 813323
科研通“疑难数据库(出版商)”最低求助积分说明 767599