Iman Taji,Tarlan Hajilou,Anna Sophie Ebner,Daniel Scheiber,Shabnam Karimi,Ernst Plesiutschnig,Werner Ecker,Afrooz Barnoush,Verena Maier‐Kiener,Roy Johnsen,Vsevolod I. Razumovskiy
To overcome the Hydrogen embrittlement (HE) susceptibility of the standard Alloy 725 (Mod A), two alloys with minor alloying modifications with B (Mod B) and B+Cu (Mod C) were produced. Then, the intergranular cracking susceptibility was investigated on bi-crystal beams by electrochemical in situ micro-cantilever bending test. The atom probe tomography and first principles calculations were employed to capture and calculate the grain boundary (GB) segregation and its effect on the GB cohesion. Cross-sectional view of the bent beams showed the superior resistance of Mod B against HE by facilitating the GB dislocation transfer/generation. While bending Mod A sample in hydrogen environment leads to form a sharp intergranular cracking, Mod B showed some nano-voids/cracks mostly in dislocation slip bands and rarely in GB path. However, a reduction of strength was observed in load-displacement (L-D) curves of Mod B. The addition of Cu, although not participated in GB segregation, compromised the lost strength of Mod B. In Mod C, after bending in H-charged condition, the nano-voids were formed in GB, but no load drop in L-D curves nor crack propagation in post-deformation observations was detected. The micro-alloying proposed in this study could be an important contribution to the future developing of H resistant alloys via GB segregation engineering.