Long time series ozone prediction in China: A novel dynamic spatiotemporal deep learning approach

计算机科学 水准点(测量) 序列(生物学) 图形 环境科学 期限(时间) 地理 地图学 理论计算机科学 遗传学 生物 物理 量子力学
作者
Wenjing Mao,Limin Jiao,Weilin Wang
出处
期刊:Building and Environment [Elsevier BV]
卷期号:218: 109087-109087 被引量:18
标识
DOI:10.1016/j.buildenv.2022.109087
摘要

Ozone pollution is a global environmental problem becoming increasingly prominent in China. It is of great significance to achieve long-term and high-precision ground-level ozone prediction on large scales to improve the efficiency of environmental governance. In this paper, we developed a dynamic graph convolutional and sequence to sequence embedded with the attention mechanism model (DG-ASeqseq) for predicting daily maximum 8-h average ozone (MDA8 O3) concentrations over China the next seven days. In the proposed approach, changeable spatial correlations are modelled by graph convolutional operations on dynamic graphs constructed based on multiple information of historical change, and temporal correlations in long time series are modelled through the sequence to sequence networks embedded with the attention mechanism. Results show the reliability and effectiveness of the proposed model, and it is superior to other benchmark models in simulating long-term spatiotemporal variations of O3 concentrations in large scale areas. Moreover, the proposed model has good prediction capability in severe O3 pollution events. Advancement in this methodology could provide guidance for the government's coordinated control of regional pollution to help improve air quality and jointly safeguard global climate security.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助wwss采纳,获得10
1秒前
晓峰完成签到,获得积分10
1秒前
LJL发布了新的文献求助10
2秒前
baiyang99发布了新的文献求助10
5秒前
ersan完成签到,获得积分10
6秒前
依然灬聆听完成签到,获得积分10
7秒前
7秒前
9秒前
重重完成签到 ,获得积分10
10秒前
隐形曼青应助xiaojiu采纳,获得50
11秒前
呃呃呃发布了新的文献求助10
12秒前
13秒前
上官尔芙发布了新的文献求助10
14秒前
14秒前
super chan完成签到,获得积分10
15秒前
紫菜完成签到,获得积分10
17秒前
18秒前
18秒前
魔幻的小蘑菇完成签到 ,获得积分10
18秒前
19秒前
赵老尕完成签到,获得积分10
19秒前
19秒前
19秒前
20秒前
犹豫梨愁发布了新的文献求助10
20秒前
22秒前
哼哼哈嘿发布了新的文献求助10
22秒前
LSY28发布了新的文献求助30
23秒前
23秒前
光亮的太阳完成签到,获得积分10
24秒前
阿文发布了新的文献求助10
24秒前
25秒前
25秒前
27秒前
baiyang99完成签到,获得积分10
28秒前
tianjiu发布了新的文献求助10
28秒前
madina发布了新的文献求助10
29秒前
慕青应助小鱼丸采纳,获得10
29秒前
32秒前
33秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808961
求助须知:如何正确求助?哪些是违规求助? 3353681
关于积分的说明 10366466
捐赠科研通 3069917
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810750
科研通“疑难数据库(出版商)”最低求助积分说明 766320