Model-informed precision dosing of vancomycin via continuous infusion: a clinical fit-for-purpose evaluation of published PK models

加药 医学 万古霉素 治疗药物监测 贝叶斯概率 重症监护医学 人口 药代动力学 统计 内科学 数学 生物 细菌 遗传学 金黄色葡萄球菌 环境卫生
作者
Astrid Heus,David W. Uster,Veerle Grootaert,N. Vermeulen,Annemie Somers,Diana Huis in ‘t Veld,Sebastian G. Wicha,Pieter De Cock
出处
期刊:International Journal of Antimicrobial Agents [Elsevier BV]
卷期号:59 (5): 106579-106579 被引量:19
标识
DOI:10.1016/j.ijantimicag.2022.106579
摘要

Model-informed precision dosing is an innovative approach used to guide bedside vancomycin dosing. The use of Bayesian software requires suitable and externally validated population pharmacokinetic (popPK) models.This study aimed to identify suitable popPK models for a priori prediction and a posteriori forecasting of vancomycin in continuous infusion. Additionally, model averaging (MAA) and model selection approach (MSA) were compared with the identified popPK models.Clinical pharmacokinetic data were retrospectively collected from patients receiving continuous vancomycin therapy and admitted to a general ward of three large Belgian hospitals. The predictive performance of the popPK models, identified in a systematic literature search, as well as the MAA/MSA were evaluated for the a priori and a posteriori scenarios using bias, root mean square errors, normalised prediction distribution errors and visual predictive checks.The predictive performance of 23 popPK models was evaluated based on clinical data from 169 patients and 923 therapeutic drug monitoring samples. Overall, the best predictive performance was found using the Okada et al. model (bias < -0.1 mg/L) followed by the Colin et al.The MAA/MSA predicted with a constantly high precision and low inaccuracy and were clinically acceptable in the Bayesian forecasting.This study identified the two-compartmental models of Okada et al. and Colin et al. as most suitable for non-ICU patients to forecast individual exposure profiles after continuous vancomycin infusion. The MAA/MSA performed equally as well as the individual popPK models; therefore, both approaches could be used in clinical practice to guide dosing decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫色哀伤发布了新的文献求助10
1秒前
秦小旋儿完成签到,获得积分10
1秒前
呜呼啦呼发布了新的文献求助10
1秒前
wangqing发布了新的文献求助10
3秒前
英俊的铭应助www采纳,获得10
4秒前
4秒前
大模型应助羽蒙采纳,获得10
4秒前
无曲发布了新的文献求助10
5秒前
xieyuanxing完成签到,获得积分10
5秒前
6秒前
godsong5287发布了新的文献求助10
7秒前
8秒前
蕃薯叶发布了新的文献求助10
9秒前
山芋发布了新的文献求助10
9秒前
9秒前
紫色哀伤完成签到,获得积分10
10秒前
11秒前
王军鹏完成签到 ,获得积分10
11秒前
够了发布了新的文献求助10
12秒前
12秒前
imzzy发布了新的文献求助10
13秒前
爆米花应助moumou采纳,获得10
13秒前
14秒前
LY0201发布了新的文献求助10
14秒前
xx发布了新的文献求助10
15秒前
tonight发布了新的文献求助10
16秒前
斑马发布了新的文献求助20
17秒前
17秒前
Cherish完成签到,获得积分10
17秒前
18秒前
18秒前
jingli发布了新的文献求助10
19秒前
20秒前
充电宝应助nbing采纳,获得10
20秒前
够了完成签到,获得积分10
20秒前
刻苦大叔发布了新的文献求助10
21秒前
情怀应助冯岗采纳,获得10
21秒前
YouHa完成签到,获得积分20
22秒前
烂漫的寻冬完成签到,获得积分20
24秒前
LY0201完成签到,获得积分20
25秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
The phrasal lexicon 200
Solving Nonlinear Equations with Newton's Method 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836238
求助须知:如何正确求助?哪些是违规求助? 3378602
关于积分的说明 10505076
捐赠科研通 3098233
什么是DOI,文献DOI怎么找? 1706347
邀请新用户注册赠送积分活动 820967
科研通“疑难数据库(出版商)”最低求助积分说明 772349