Detection of Alzheimer’s disease using features of brain region-of-interest-based individual network constructed with the sMRI image

人工智能 模式识别(心理学) 支持向量机 计算机科学 感兴趣区域 特征提取 特征(语言学) 主成分分析 特征向量 计算机视觉 语言学 哲学
作者
Jinwang Feng,Shaowu Zhang,Luonan Chen,Chunman Zuo
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:98: 102057-102057 被引量:6
标识
DOI:10.1016/j.compmedimag.2022.102057
摘要

Brain networks constructed with regions of interest (ROIs) from the structural magnetic resonance imaging (sMRI) image are widely investigated for detecting Alzheimer's disease (AD). However, the ROI is generally represented by spatial domain-based features, so attentions are hardly paid to constructing a brain network with the frequency domain-based feature. In order to accurately characterize the ROI in the frequency domain and then construct an individual network, in this study, a novel method, which can describe the ROI properly by directional subbands and capture correlations between those ROIs, is proposed to construct a shearlet subband energy feature-based individual network (SSBIN) for AD detection. Specifically, the SSBIN is constructed with 90 ROIs which are segmented from the pre-processed sMRI image based on the automated anatomical labeling atlas, the 90 ROIs are represented by directional subband-based energy feature vectors (SVs) formed by jointing energy features extracted from their directional subbands, and the weight values of the SSBIN are computed by Pearson's correlation coefficient (PCC). Subsequently, two network features are extracted from the SSBIN: the node feature vector (NV) is computed by averaging the 90 SVs; the low dimensional edge feature vector (LV) is obtained by kernel principal component analysis (KPCA). Following that the concatenation of NV and LV is used as a SSBIN-based feature for the sMRI image. Finally, we use support vector machine (SVM) with the radial basis function kernel as classifier to categorize 680 subjects selected from the AD Neuroimaging Initiative (ADNI) database. Experimental results validate that the ROI can be properly characterized by the NV, and correlations between ROIs captured by the LV play an important role in AD detection. Besides, a series of comparisons with four current state-of-the-art approaches demonstrate the higher AD detecting performance of the SSBIN method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助健壮的紫菱采纳,获得10
1秒前
Zhangtao完成签到,获得积分10
1秒前
1秒前
压缩机发布了新的文献求助200
1秒前
香蕉觅云应助Hunter采纳,获得10
1秒前
dyzssg完成签到 ,获得积分10
2秒前
多多完成签到,获得积分10
3秒前
科研谢啦发布了新的文献求助10
3秒前
5秒前
6秒前
lin应助111采纳,获得50
9秒前
彼方发布了新的文献求助10
10秒前
bkagyin应助zoe采纳,获得10
10秒前
科研谢啦完成签到,获得积分10
11秒前
靓丽傲玉发布了新的文献求助10
12秒前
12秒前
中旬日发布了新的文献求助10
13秒前
14秒前
Daily完成签到,获得积分10
14秒前
15秒前
17秒前
actor2006完成签到,获得积分10
18秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
无花果应助科研通管家采纳,获得10
19秒前
Hello应助科研通管家采纳,获得10
19秒前
今后应助科研通管家采纳,获得10
19秒前
19秒前
领导范儿应助科研通管家采纳,获得10
19秒前
19秒前
21秒前
烟花应助七月采纳,获得10
21秒前
靓丽傲玉完成签到,获得积分10
22秒前
科研通AI5应助王道远采纳,获得100
22秒前
23秒前
Liandong发布了新的文献求助10
23秒前
Yang发布了新的文献求助10
24秒前
星辰大海应助彼方采纳,获得10
24秒前
高大书易完成签到 ,获得积分10
27秒前
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793299
求助须知:如何正确求助?哪些是违规求助? 3338015
关于积分的说明 10288400
捐赠科研通 3054639
什么是DOI,文献DOI怎么找? 1676091
邀请新用户注册赠送积分活动 804095
科研通“疑难数据库(出版商)”最低求助积分说明 761752