已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Using artificial intelligence methods for systematic review in health sciences: A systematic review

系统回顾 计算机科学 人工智能 数据提取 梅德林 人工智能应用 数据科学 机器学习 政治学 法学
作者
Aymeric Blaizot,Sajesh K. Veettil,Pantakarn Saidoung,Carlos Francisco Moreno‐García,Nirmalie Wiratunga,Magaly Aceves‐Martins,Nai Ming Lai,Nathorn Chaiyakunapruk
出处
期刊:Research Synthesis Methods [Wiley]
卷期号:13 (3): 353-362 被引量:109
标识
DOI:10.1002/jrsm.1553
摘要

Abstract The exponential increase in published articles makes a thorough and expedient review of literature increasingly challenging. This review delineated automated tools and platforms that employ artificial intelligence (AI) approaches and evaluated the reported benefits and challenges in using such methods. A search was conducted in 4 databases (Medline, Embase, CDSR, and Epistemonikos) up to April 2021 for systematic reviews and other related reviews implementing AI methods. To be included, the review must use any form of AI method, including machine learning, deep learning, neural network, or any other applications used to enable the full or semi‐autonomous performance of one or more stages in the development of evidence synthesis. Twelve reviews were included, using nine different tools to implement 15 different AI methods. Eleven methods were used in the screening stages of the review (73%). The rest were divided: two in data extraction (13%) and two in risk of bias assessment (13%). The ambiguous benefits of the data extractions, combined with the reported advantages from 10 reviews, indicating that AI platforms have taken hold with varying success in evidence synthesis. However, the results are qualified by the reliance on the self‐reporting of the review authors. Extensive human validation still appears required at this stage in implementing AI methods, though further evaluation is required to define the overall contribution of such platforms in enhancing efficiency and quality in evidence synthesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
二七发布了新的文献求助10
2秒前
天元神尊完成签到 ,获得积分10
3秒前
flipped完成签到,获得积分10
3秒前
单于无极发布了新的文献求助30
4秒前
6秒前
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
YifanWang应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
小初应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI5应助沉默数据线采纳,获得10
9秒前
9秒前
15秒前
852发布了新的文献求助10
15秒前
wyj0815发布了新的文献求助10
18秒前
搞科研的小李同学完成签到 ,获得积分10
19秒前
19秒前
墨染发布了新的文献求助30
19秒前
dingyu24发布了新的文献求助30
22秒前
23秒前
大个应助碧落黄泉诗采纳,获得10
24秒前
橘子发布了新的文献求助10
27秒前
rynchee完成签到 ,获得积分0
31秒前
华仔应助ylflammps采纳,获得10
31秒前
32秒前
华仔应助文献求助采纳,获得10
33秒前
33秒前
35秒前
37秒前
37秒前
开心的野狼完成签到 ,获得积分10
39秒前
40秒前
澡雪发布了新的文献求助10
41秒前
gxmu6322完成签到,获得积分10
44秒前
XIA完成签到 ,获得积分10
45秒前
单于无极完成签到,获得积分10
45秒前
45秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
The acute effects of performing drop jumps of different intensities on concentric squat strength 200
Erectile dysfunction From bench to bedside 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824836
求助须知:如何正确求助?哪些是违规求助? 3367137
关于积分的说明 10444489
捐赠科研通 3086408
什么是DOI,文献DOI怎么找? 1698019
邀请新用户注册赠送积分活动 816632
科研通“疑难数据库(出版商)”最低求助积分说明 769840