Heterogeneous structural responses recovery based on multi-modal deep learning

缺少数据 计算机科学 插补(统计学) 数据挖掘 均方误差 情态动词 水准点(测量) 传感器融合 人工智能 模式识别(心理学) 机器学习 统计 数学 地理 高分子化学 化学 大地测量学
作者
Bowen Du,Liyu Wu,Leilei Sun,Fei Xu,Linchao Li
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:22 (2): 799-813 被引量:13
标识
DOI:10.1177/14759217221094499
摘要

For structural health monitoring, a complete dataset is important for further analysis such as modal identification and risk early warning. Unfortunately, the missing data normally exist in current database due to sensor failures, transmission system interruption, and hardware malfunctions. Currently, most of the studies just deleted the dataset containing missing data or using mean values as imputation which could wrongly reflect the characteristics changes of the structure. The present study therefore develops a heterogeneous structural response recovery method based on multi-modal fusion auto-encoder which can consider temporal correlations and spatial correlations and correlations between heterogeneous structural responses simultaneously. Moreover, a parallel optimization method is proposed to optimize the parameters of the deep fusion networks. A dataset containing about 3 months and two input attributes is collected from a bridge and utilized for training and testing the proposed method and some benchmark methods. Statistical scores including root mean square error (RSME), mean absolute error (MAE), and mean relative error (MRE) are applied to evaluate the performance of the implemented models, respectively. Results show that the proposed method achieve the best imputation performance under different missing scenarios. Furthermore, the proposed method can achieve better performance when the missing rate is high. The results suggest that the consideration between heterogeneous structural responses is critical for missing data recovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无敌完成签到 ,获得积分10
刚刚
和谐迎夏发布了新的文献求助10
刚刚
薖上发布了新的文献求助10
刚刚
香蕉觅云应助小花猫采纳,获得10
刚刚
刚刚
wangdafa发布了新的文献求助10
1秒前
暴风少年发布了新的文献求助10
1秒前
彭于晏应助YouY0123采纳,获得20
1秒前
1秒前
岳岳岳发布了新的文献求助10
1秒前
ilihe应助cc努力发sci采纳,获得10
1秒前
1秒前
2秒前
Olivia完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
吴高凤发布了新的文献求助10
3秒前
文静宛亦发布了新的文献求助10
4秒前
爱学习的YY完成签到 ,获得积分10
4秒前
KX2024发布了新的文献求助10
5秒前
冲冲冲完成签到,获得积分10
5秒前
5秒前
6秒前
付宇飞发布了新的文献求助10
7秒前
su发布了新的文献求助10
7秒前
7秒前
隐形曼青应助Eina采纳,获得10
7秒前
丫丫发布了新的文献求助10
7秒前
David123发布了新的文献求助10
8秒前
ding应助QYSF222采纳,获得10
8秒前
伶俐一曲发布了新的文献求助10
8秒前
qiuxu完成签到,获得积分10
8秒前
酷波er应助llll采纳,获得10
8秒前
薖上完成签到,获得积分10
8秒前
Yxian发布了新的文献求助10
9秒前
9秒前
别斑秃了完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784591
求助须知:如何正确求助?哪些是违规求助? 5683318
关于积分的说明 15464856
捐赠科研通 4913776
什么是DOI,文献DOI怎么找? 2644858
邀请新用户注册赠送积分活动 1592804
关于科研通互助平台的介绍 1547207