Training, validation, and clinical implementation of a deep-learning segmentation model for radiotherapy of loco-regional breast cancer

医学 分割 轮廓 乳腺癌 医学物理学 放射治疗 核医学 人工智能 计算机科学 放射科 癌症 内科学 计算机图形学(图像)
作者
Sigrun Saur Almberg,Christoffer Lervåg,Jomar Frengen,Monica Eidem,Tatiana Abramova,Cecilie Soma Nordstrand,Mirjam Delange Alsaker,Hanne Tøndel,Sunil Xavier Raj,Anne Dybdahl Wanderås
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:173: 62-68 被引量:25
标识
DOI:10.1016/j.radonc.2022.05.018
摘要

To train and validate a comprehensive deep-learning (DL) segmentation model for loco-regional breast cancer with the aim of clinical implementation.DL segmentation models for 7 clinical target volumes (CTVs) and 11 organs at risk (OARs) were trained on 170 left-sided breast cancer cases from two radiotherapy centres in Norway. Another 30 patient cases were used for validation, which included the evaluation of Dice similarity coefficient and Hausdorff distance, qualitative scoring according to clinical usability, and relevant dosimetric parameters. The manual inter-observer variation (IOV) was also evaluated and served as a benchmark. Delineation of the target volumes followed the ESTRO guidelines.Based on the geometric similarity metrics, the model performed significantly better than IOV for most structures. Qualitatively, no or only minor corrections were required for 14% and 71% of the CTVs and 72% and 26% of the OARs, respectively. Major corrections were required for 15% of the CTVs and 2% of the OARs. The most frequent corrections occurred in the cranial and caudal parts of the structures. The dose coverage, based on D98 > 95%, was fulfilled for 100% and 89% of the breast and lymph node CTVs, respectively. No differences in OAR dose parameters were considered clinically relevant. The model was implemented in a commercial treatment planning system, which generates the structures in 1.5 min.Convincing results from the validation led to the decision of clinical implementation. The clinical use will be monitored regarding applicability, standardization and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
EMMA完成签到,获得积分20
1秒前
QI完成签到,获得积分10
1秒前
CodeCraft应助Yuan采纳,获得10
1秒前
2秒前
失眠的霸完成签到,获得积分10
2秒前
2秒前
YY发布了新的文献求助10
2秒前
3秒前
3秒前
archer01完成签到,获得积分20
4秒前
4秒前
4秒前
QI发布了新的文献求助10
5秒前
5秒前
周小慧完成签到,获得积分10
5秒前
lizhiqian2024发布了新的文献求助10
5秒前
6秒前
6秒前
等待凝海完成签到 ,获得积分10
7秒前
pqyang发布了新的文献求助10
8秒前
8秒前
柔弱熊猫发布了新的文献求助10
8秒前
xh发布了新的文献求助10
8秒前
小二郎应助轻歌水越采纳,获得10
9秒前
喵喵发布了新的文献求助10
9秒前
9秒前
小白发布了新的文献求助10
10秒前
爆米花应助樊樊樊梵情采纳,获得10
10秒前
10秒前
10秒前
科研通AI5应助搞怪的人龙采纳,获得10
11秒前
11秒前
李嘉乐发布了新的文献求助10
11秒前
11秒前
lili发布了新的文献求助10
11秒前
12秒前
华仔应助archer01采纳,获得10
13秒前
klpkyx发布了新的文献求助10
14秒前
加贝发布了新的文献求助20
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Mechanochemistry of Solid Surfaces 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806719
求助须知:如何正确求助?哪些是违规求助? 3351444
关于积分的说明 10354221
捐赠科研通 3067286
什么是DOI,文献DOI怎么找? 1684457
邀请新用户注册赠送积分活动 809674
科研通“疑难数据库(出版商)”最低求助积分说明 765568