Object detection based on multi-modal adaptive fusion using YOLOv3

人工智能 计算机科学 计算机视觉 目标检测 卷积神经网络 阈值 交叉口(航空) 模式识别(心理学) 图像(数学) 工程类 航空航天工程
作者
Aarfa Bano Sheikh,Apurva Baru,Sanjana Shinde Desai,Supriya Mangale
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:16 (02) 被引量:1
标识
DOI:10.1117/1.jrs.16.024523
摘要

Object detection is a technique used to localize and classify objects in an image or a video sequence. It is an emerging topic of research in the field of computer vision. However, detections in a video are affected by sensor-specific challenges. A convolutional neural network-based You Only Look Once, version 3 (YOLOv3) object detection algorithm was used to get optimized computation time and accuracy. In the proposed methodology, the YOLOv3 architecture extracted significant features from both the visible and thermal imaging domains, and an adaptive fusion of both domains was performed to determine the dominant imaging domain and provide robust detections. The resulting YOLOv3 detections included the bounding box coordinates, confidence score, and class from each imaging domain, which were fused implicitly into a single plane. The sensor domain having the maximum number of object detections was chosen as the reference to be compared with the other domain for the adaptive fusion process. After fusion, the algorithm removed redundancy using adaptive intersection over union thresholding. The mean average precision result obtained from the fusion algorithm was 44.25%. A comparative study was also carried out between pre-trained common objects in context weights and custom CAMEL dataset weights; it showed the significance of using adaptive fusion in challenging situations such as nighttime, shadow, varying illumination, moving camera, and crowd.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣慰阑悦完成签到,获得积分10
1秒前
加鱼发布了新的文献求助10
1秒前
YangYue完成签到,获得积分10
1秒前
流香完成签到,获得积分10
3秒前
zwh完成签到,获得积分10
4秒前
karry完成签到,获得积分20
4秒前
阔达蓝血发布了新的文献求助10
4秒前
aaaaa完成签到,获得积分20
4秒前
4秒前
2_3_10完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
哈哈哈发布了新的文献求助30
5秒前
6秒前
熹微完成签到,获得积分10
7秒前
demon完成签到,获得积分10
7秒前
上官若男应助lalafish采纳,获得30
8秒前
小巧的寻双完成签到,获得积分10
9秒前
麦乐提发布了新的文献求助10
9秒前
10秒前
传奇3应助Li采纳,获得10
10秒前
李爱国应助服部平次采纳,获得10
10秒前
南华小火汁完成签到,获得积分10
10秒前
飞快的冰之完成签到,获得积分10
11秒前
11秒前
11秒前
wpz完成签到,获得积分10
12秒前
yr完成签到,获得积分10
12秒前
13秒前
沉静的白猫完成签到,获得积分20
13秒前
甜北枳发布了新的文献求助10
14秒前
14秒前
科研通AI5应助阔达蓝血采纳,获得10
15秒前
迷你的晓槐完成签到,获得积分10
15秒前
16秒前
Akim应助加鱼采纳,获得10
16秒前
嘉棯完成签到 ,获得积分10
17秒前
17秒前
18秒前
18秒前
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5145745
求助须知:如何正确求助?哪些是违规求助? 4342946
关于积分的说明 13524885
捐赠科研通 4183949
什么是DOI,文献DOI怎么找? 2294322
邀请新用户注册赠送积分活动 1294744
关于科研通互助平台的介绍 1237801