亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Coastline detection in satellite imagery: A deep learning approach on new benchmark data

计算机科学 卷积神经网络 人工智能 遥感 深度学习 卫星图像 范畴变量 水准点(测量) 索贝尔算子 人工神经网络 机器学习 数据挖掘 模式识别(心理学)
作者
Catherine Seale,Thomas Redfern,Paul Chatfield,Chunbo Luo,Kari Dempsey
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:278: 113044-113044
标识
DOI:10.1016/j.rse.2022.113044
摘要

Detailed and up-to-date coastline morphology data underpins our understanding of coastline change over time. The development of an automated and scalable coastline extraction methodology from satellite imagery is currently limited by the low availability of open, globally distributed and diverse labelled data with which to develop and benchmark techniques. Therefore, in this study we present the Sentinel-2 Water Edges Dataset (SWED), a new and bespoke labelled image dataset for the development and bench-marking of techniques for the automated extraction of coastline morphology data from Sentinel-2 images. Composed of 16 labelled training Sentinel-2 scenes, and 98 test label-image pairs, SWED is globally distributed and contains examples of many different coastline types and natural and anthropogenic coastline features. To provide a baseline of model performance against SWED we train and test four convolutional neural network models, based on the U-Net model architecture. Models are optimised using Categorical Cross-entropy Loss, Sørensen–Dice Loss and two novel loss functions we present for the focusing of model training attention to the boundary between land and water. Through a hybrid quantitative and qualitative model assessment process we demonstrate that the model trained using our novel Sobel-edge loss function has greater sensitivity to fine-scale, narrow coastline features whilst possessing near top quantitative performance demonstrated by Categorical Cross-entropy. The SWED dataset is published openly for use by the remote sensing and machine learning communities, whilst the Sobel-edge loss is available for use in machine learning applications where sensitivity to boundary features is important. • We describe a new dataset for training and benchmarking coastline extraction models. • The new dataset contains labelled Sentinel-2 imagery, in training and test splits. • The new dataset contains diverse coastline types and features from around the world. • Common and novel loss functions are used to optimise a convolutional neural network. • The novel Sobel-edge loss function showed greatest sensitivity to coastal features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雾瑶发布了新的文献求助10
2秒前
7秒前
IgorLi发布了新的文献求助10
13秒前
壮观以松完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
32秒前
徐凤年完成签到,获得积分10
57秒前
紫熊发布了新的文献求助40
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
希望天下0贩的0应助ZYP采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
虚心凡蕾发布了新的文献求助10
2分钟前
2分钟前
传奇3应助虚心凡蕾采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
紫熊完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
虚心凡蕾关注了科研通微信公众号
2分钟前
TTTHANKS发布了新的文献求助10
3分钟前
3分钟前
虚心凡蕾发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
胡国伦完成签到 ,获得积分10
3分钟前
科研通AI2S应助Jzh1032457162采纳,获得10
3分钟前
3分钟前
ouo发布了新的文献求助10
3分钟前
3分钟前
Jzh1032457162发布了新的文献求助10
3分钟前
Jzh1032457162完成签到,获得积分20
4分钟前
白嫖论文完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
yindi1991完成签到 ,获得积分10
5分钟前
picapica668完成签到 ,获得积分10
5分钟前
Skye完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
Plasmonics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3868018
求助须知:如何正确求助?哪些是违规求助? 3410275
关于积分的说明 10667017
捐赠科研通 3134478
什么是DOI,文献DOI怎么找? 1729108
邀请新用户注册赠送积分活动 833178
科研通“疑难数据库(出版商)”最低求助积分说明 780620