化学
糖苷键
分子内力
单独一对
氢键
催化作用
过渡状态
键裂
反作用坐标
羟甲基
立体化学
光化学
计算化学
有机化学
分子
酶
作者
Paul J. Dauenhauer,Vineet Maliekkal,Matthew Neurock
标识
DOI:10.26434/chemrxiv.12290588
摘要
Mechanistic insights into glycosidic bond activation in cellulose pyrolysis were obtained via first principles density functional theory calculations that explain the peculiar similarity in kinetics for different stereochemical glycosidic bonds (β vs α) and establish the role of the three-dimensional hydroxyl environment around the reaction center in activation dynamics. The reported activating mechanism of the α-isomer was shown to require an initial formation of a transient C1-O2-C2 epoxide, that subsequently undergoes transformation to levoglucosan. Density functional theory results from maltose, a model compound for the α-isomer, show that the intramolecular C2 hydroxyl group favorably interacts with lone pair electrons on the ether oxygen atom of an α-glycosidic bond in a manner similar to the hydroxymethyl (C6 hydroxyl) group interacting with the lone pair electrons on the ether oxygen atom of a β glycosidic bond. This mechanism has an activation energy of 52.4 kcal/mol, which is similar to the barriers reported for non-catalytic transglycosylation mechanism (~50 kcal/mol). Subsequent constrained ab initio molecular dynamics (AIMD) simulations revealed that vicinal hydroxyl groups in the condensed environment of a reacting carbohydrate melt anchor transition states via two-to-three hydrogen bonds and lead to lower free energy barriers (~32-37 kcal mol-1) in agreement with previous experiments.
科研通智能强力驱动
Strongly Powered by AbleSci AI