非线性系统
贝叶斯概率
拉普拉斯变换
概率逻辑
计算机科学
噪音(视频)
磁滞
分层数据库模型
算法
控制理论(社会学)
人工智能
数学
数据挖掘
控制(管理)
数学分析
物理
图像(数学)
量子力学
作者
Xinyu Jia,Omid Sedehi,Lambros S. Katafygiotis,Babak Moaveni,Costas Papadimitriou
出处
期刊:River Publishers eBooks
[River Publishers]
日期:2022-01-01
卷期号:: 91-95
被引量:1
标识
DOI:10.1007/978-3-030-77348-9_14
摘要
This paper presents a novel hierarchical Bayesian modeling (HBM) framework for the model updating and response predictions of dynamic systems with material nonlinearity using multiple data sets consisting of measured response time histories. The proposed framework is capable of capturing the uncertainties originating from both structural and prediction error parameters. To this end, a multilevel probabilistic model is proposed aiming to characterize the variability of both model and noise parameters. Moreover, a new Laplace approximation is formulated within the HBM framework to reduce the computational burden up to a great extent. Finally, a multidegree of freedom (MDOF) nonlinear system modeled by Bouc-Wen hysteresis elements is employed to demonstrate the effectiveness of the method. © 2022, The Society for Experimental Mechanics, Inc.
科研通智能强力驱动
Strongly Powered by AbleSci AI