点头老鼠
点头
自身免疫
失调
类胡萝卜素
抗菌肽
胰岛炎
1型糖尿病
医学
肠道菌群
微生物学
生物
免疫学
免疫系统
先天免疫系统
抗菌剂
糖尿病
内分泌学
作者
Wenjie Liang,Emmanuelle Énée,Cédric Andre-Vallee,Marika Falcone,Jia Sun,James S. Diana
出处
期刊:Gastroenterology
[Elsevier BV]
日期:2021-12-29
卷期号:162 (4): 1288-1302.e16
被引量:54
标识
DOI:10.1053/j.gastro.2021.12.272
摘要
Background & AimsAlteration of the gut microbiota is implicated in the development of autoimmune type 1 diabetes (T1D), as shown in humans and the nonobese diabetic (NOD) mouse model. However, how gut dysbiosis arises and promotes the autoimmune response remains an open question. We investigated whether early events affecting the intestinal homeostasis in newborn NOD mice may explain the development of the autoimmune response in the adult pancreas.MethodsWe profiled the transcriptome and the microbiota in the colon between newborn NOD mice and nonautoimmune strains. We identified a seminal defect in the intestinal homeostasis of newborn NOD mice and deciphered the mechanism linking this defect to the diabetogenic response in the adult.ResultsWe determined that the cathelicidin-related antimicrobial peptide (CRAMP) expression was defective in the colon of newborn NOD mice, allowing inducing dysbiosis. Dysbiosis stimulated the colonic epithelial cells to produce type I interferons that pathologically imprinted the local neonatal immune system. This pathological immune imprinting later promoted the pancreatic autoimmune response in the adult and the development of diabetes. Increasing colonic CRAMP expression in newborn NOD mice by means of local CRAMP treatment or CRAMP-expressing probiotic restored colonic homeostasis and halted the diabetogenic response, preventing autoimmune diabetes.ConclusionsWe identified whether a defective colonic expression in the CRAMP antimicrobial peptide induces dysbiosis, contributing to autoimmunity in the pancreas. Hence, the manipulation of intestinal antimicrobial peptides may be considered a relevant therapeutic approach to prevent autoimmune diabetes in at-risk children. Alteration of the gut microbiota is implicated in the development of autoimmune type 1 diabetes (T1D), as shown in humans and the nonobese diabetic (NOD) mouse model. However, how gut dysbiosis arises and promotes the autoimmune response remains an open question. We investigated whether early events affecting the intestinal homeostasis in newborn NOD mice may explain the development of the autoimmune response in the adult pancreas. We profiled the transcriptome and the microbiota in the colon between newborn NOD mice and nonautoimmune strains. We identified a seminal defect in the intestinal homeostasis of newborn NOD mice and deciphered the mechanism linking this defect to the diabetogenic response in the adult. We determined that the cathelicidin-related antimicrobial peptide (CRAMP) expression was defective in the colon of newborn NOD mice, allowing inducing dysbiosis. Dysbiosis stimulated the colonic epithelial cells to produce type I interferons that pathologically imprinted the local neonatal immune system. This pathological immune imprinting later promoted the pancreatic autoimmune response in the adult and the development of diabetes. Increasing colonic CRAMP expression in newborn NOD mice by means of local CRAMP treatment or CRAMP-expressing probiotic restored colonic homeostasis and halted the diabetogenic response, preventing autoimmune diabetes. We identified whether a defective colonic expression in the CRAMP antimicrobial peptide induces dysbiosis, contributing to autoimmunity in the pancreas. Hence, the manipulation of intestinal antimicrobial peptides may be considered a relevant therapeutic approach to prevent autoimmune diabetes in at-risk children.
科研通智能强力驱动
Strongly Powered by AbleSci AI