Control of phonon transport by the formation of the Al2O3 interlayer in Al2O3–ZnO superlattice thin films and their in-plane thermoelectric energy generator performance

超晶格 材料科学 塞贝克系数 热电效应 薄膜 热电材料 碲化铋 热导率 功勋 声子散射 光电子学 凝聚态物理 纳米技术 复合材料 冶金 物理 热力学
作者
No Won Park,Jay Ahn,Taehyun Park,Jung Hun Lee,Won Yong Lee,Kwanghee Cho,Yoosik Yoon,Chong Won Choi,Jin‐Seong Park,Sang Kwon Lee
出处
期刊:Nanoscale [The Royal Society of Chemistry]
卷期号:9 (21): 7027-7036 被引量:40
标识
DOI:10.1039/c7nr00690j
摘要

Recently, significant progress has been made in increasing the figure-of-merit (ZT) of various nanostructured materials, including thin-film and quantum dot superlattice structures. Studies have focused on the size reduction and control of the surface or interface of nanostructured materials since these approaches enhance the thermopower and phonon scattering in quantum and superlattice structures. Currently, bismuth–tellurium-based semiconductor materials are widely employed for thermoelectric (TE) devices such as TE energy generators and coolers, in addition to other sensors, for use at temperatures under 400 K. However, new and promising TE materials with enhanced TE performance, including doped zinc oxide (ZnO) multilayer or superlattice thin films, are also required for designing solid-state TE power generating devices with the maximum output power density and for investigating the physics of in-plane TE generators. Herein, we report the growth of Al2O3/ZnO (AO/ZnO) superlattice thin films, which were prepared by atomic layer deposition (ALD), and the evaluation of their electrical and TE properties. All the in-plane TE properties, including the Seebeck coefficient (S), electrical conductivity (σ), and thermal conductivity (κ), of the AO/ZnO superlattice (with a 0.82 nm-thick AO layer) and AO/ZnO films (with a 0.13 nm-thick AO layer) were evaluated in the temperature range 40–300 K, and the measured S, σ, and κ were −62.4 and −17.5 μV K−1, 113 and 847 (Ω cm)−1, and 0.96 and 1.04 W m−1 K−1, respectively, at 300 K. Consequently, the in-plane TE ZT factor of AO/ZnO superlattice films was found to be ∼0.014, which is approximately two times more than that of AO/ZnO films (ZT of ∼0.007) at 300 K. Furthermore, the electrical power generation efficiency of the TE energy generator consisting of four couples of n-AO/ZnO superlattice films and p-Bi0.5Sb1.5Te3 (p-BST) thin-film legs on the substrate was demonstrated. Surprisingly, the output power of the 100 nm-thick n-AO/ZnO superlattice film/p-BST TE energy generator was determined to be ∼1.0 nW at a temperature difference of 80 K, corresponding to a significant improvement of ∼130% and ∼220% compared to the 100 nm-thick AO/ZnO film/p-BST and n-BT/p-BST film generators, respectively, owing to the enhancement of the TE properties, including the power factor of the superlattice film.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
源远流长发布了新的文献求助10
1秒前
2秒前
ygh完成签到,获得积分10
3秒前
PSC完成签到,获得积分10
4秒前
wjxcl发布了新的文献求助10
5秒前
NexusExplorer应助tianshuai采纳,获得10
5秒前
宋宋发布了新的文献求助10
6秒前
7秒前
香蕉觅云应助sekidesu采纳,获得10
12秒前
阿巴阿巴发布了新的文献求助10
13秒前
14秒前
思源应助xiongqi采纳,获得10
16秒前
852应助李薇采纳,获得10
18秒前
。。完成签到,获得积分10
19秒前
爆米花应助安静半双采纳,获得30
19秒前
21秒前
24秒前
做个大侠完成签到,获得积分10
25秒前
AidenZhang发布了新的文献求助30
27秒前
27秒前
29秒前
30秒前
折光发布了新的文献求助10
30秒前
30秒前
32秒前
小李要努力Oo完成签到,获得积分20
33秒前
dsfaaa发布了新的文献求助10
35秒前
索大学术完成签到,获得积分10
35秒前
35秒前
安静半双发布了新的文献求助30
35秒前
李薇发布了新的文献求助10
35秒前
37秒前
会撒娇的电源完成签到,获得积分10
37秒前
Esther完成签到,获得积分20
38秒前
38秒前
38秒前
所所应助四季豆采纳,获得10
39秒前
鸭鸭要学习鸭完成签到 ,获得积分10
40秒前
42秒前
43秒前
高分求助中
The Illustrated History of Gymnastics 800
The Bourse of Babylon : market quotations in the astronomical diaries of Babylonia 680
Division and square root. Digit-recurrence algorithms and implementations 500
機能營養學前瞻(3 Ed.) 300
Problems of transcultural communication 300
Zwischen Selbstbestimmung und Selbstbehauptung 300
Johann Gottlieb Fichte: Die späten wissenschaftlichen Vorlesungen / IV,1: ›Transzendentale Logik I (1812)‹ 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2504607
求助须知:如何正确求助?哪些是违规求助? 2157764
关于积分的说明 5522481
捐赠科研通 1878125
什么是DOI,文献DOI怎么找? 934125
版权声明 563932
科研通“疑难数据库(出版商)”最低求助积分说明 498937