奈奎斯特-香农抽样定理
奈奎斯特率
计算机科学
过采样
采样(信号处理)
压缩传感
算法
带宽(计算)
信号(编程语言)
维数之咒
数据压缩
计算机视觉
实时计算
人工智能
电信
滤波器(信号处理)
程序设计语言
作者
Richard G. Baraniuk,Thomas Goldstein,Aswin C. Sankaranarayanan,Christoph Studer,Ashok Veeraraghavan,Michael B. Wakin
标识
DOI:10.1109/msp.2016.2602099
摘要
The design of conventional sensors is based primarily on the Shannon?Nyquist sampling theorem, which states that a signal of bandwidth W Hz is fully determined by its discrete time samples provided the sampling rate exceeds 2 W samples per second. For discrete time signals, the Shannon?Nyquist theorem has a very simple interpretation: the number of data samples must be at least as large as the dimensionality of the signal being sampled and recovered. This important result enables signal processing in the discrete time domain without any loss of information. However, in an increasing number of applications, the Shannon-Nyquist sampling theorem dictates an unnecessary and often prohibitively high sampling rate (see "What Is the Nyquist Rate of a Video Signal?"). As a motivating example, the high resolution of the image sensor hardware in modern cameras reflects the large amount of data sensed to capture an image. A 10-megapixel camera, in effect, takes 10 million measurements of the scene. Yet, almost immediately after acquisition, redundancies in the image are exploited to compress the acquired data significantly, often at compression ratios of 100:1 for visualization and even higher for detection and classification tasks. This example suggests immense wastage in the overall design of conventional cameras.
科研通智能强力驱动
Strongly Powered by AbleSci AI