Green Light Drives Leaf Photosynthesis More Efficiently than Red Light in Strong White Light: Revisiting the Enigmatic Question of Why Leaves are Green

光合作用 叶绿体 光合有效辐射 叶绿素 光抑制 鲁比斯科 植物 叶绿素荧光 光合效率 吸收率 生物 光系统II 化学 物理 光学 反射率 基因 生物化学
作者
Ichiro Terashima,Takashi Fujita,Takeshi Inoue,Wah Soon Chow,Riichi Oguchi
出处
期刊:Plant and Cell Physiology [Oxford University Press]
卷期号:50 (4): 684-697 被引量:695
标识
DOI:10.1093/pcp/pcp034
摘要

The literature and our present examinations indicate that the intra-leaf light absorption profile is in most cases steeper than the photosynthetic capacity profile. In strong white light, therefore, the quantum yield of photosynthesis would be lower in the upper chloroplasts, located near the illuminated surface, than that in the lower chloroplasts. Because green light can penetrate further into the leaf than red or blue light, in strong white light, any additional green light absorbed by the lower chloroplasts would increase leaf photosynthesis to a greater extent than would additional red or blue light. Based on the assessment of effects of the additional monochromatic light on leaf photosynthesis, we developed the differential quantum yield method that quantifies efficiency of any monochromatic light in white light. Application of this method to sunflower leaves clearly showed that, in moderate to strong white light, green light drove photosynthesis more effectively than red light. The green leaf should have a considerable volume of chloroplasts to accommodate the inefficient carboxylation enzyme, Rubisco, and deliver appropriate light to all the chloroplasts. By using chlorophylls that absorb green light weakly, modifying mesophyll structure and adjusting the Rubisco/chlorophyll ratio, the leaf appears to satisfy two somewhat conflicting requirements: to increase the absorptance of photosynthetically active radiation, and to drive photosynthesis efficiently in all the chloroplasts. We also discuss some serious problems that are caused by neglecting these intra-leaf profiles when estimating whole leaf electron transport rates and assessing photoinhibition by fluorescence techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
liuhaixu发布了新的文献求助20
1秒前
深情安青应助兔先生采纳,获得10
1秒前
1秒前
wenwei完成签到,获得积分10
2秒前
司空元正发布了新的文献求助10
3秒前
BIGDUCK发布了新的文献求助10
4秒前
090发布了新的文献求助10
4秒前
车非笑完成签到,获得积分10
4秒前
深情惜梦发布了新的文献求助10
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
好蓝发布了新的文献求助10
7秒前
李特冷发布了新的文献求助10
7秒前
7秒前
Lucas应助parpate采纳,获得10
7秒前
colour完成签到 ,获得积分10
8秒前
9秒前
9秒前
luck完成签到,获得积分20
9秒前
小二郎应助李润韬采纳,获得10
12秒前
13秒前
13秒前
深情惜梦发布了新的文献求助10
14秒前
luck发布了新的文献求助10
14秒前
14秒前
15秒前
LZJ完成签到,获得积分10
15秒前
浮游应助高贵宛海采纳,获得10
16秒前
陈艺鹏完成签到,获得积分10
18秒前
Guapifei发布了新的文献求助10
18秒前
18秒前
18秒前
三杠发布了新的文献求助20
18秒前
小落完成签到 ,获得积分10
19秒前
19秒前
Oracle发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助150
20秒前
灵巧代柔发布了新的文献求助20
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132277
求助须知:如何正确求助?哪些是违规求助? 4333736
关于积分的说明 13502006
捐赠科研通 4170755
什么是DOI,文献DOI怎么找? 2286630
邀请新用户注册赠送积分活动 1287527
关于科研通互助平台的介绍 1228447