粒子群优化
数学优化
趋同(经济学)
人口
计算机科学
集合(抽象数据类型)
多群优化
进化算法
元启发式
局部搜索(优化)
多目标优化
帕累托原理
帕累托最优
局部最优
数学
人口学
社会学
经济
程序设计语言
经济增长
作者
Sanaz Mostaghim,Jürgen Teich
标识
DOI:10.1109/sis.2003.1202243
摘要
In multi-objective particle swarm optimization (MOPSO) methods, selecting the best local guide (the global best particle) for each particle of the population from a set of Pareto-optimal solutions has a great impact on the convergence and diversity of solutions, especially when optimizing problems with high number of objectives. This paper introduces the Sigma method as a new method for finding best local guides for each particle of the population. The Sigma method is implemented and is compared with another method, which uses the strategy of an existing MOPSO method for finding the local guides. These methods are examined for different test functions and the results are compared with the results of a multi-objective evolutionary algorithm (MOEA).
科研通智能强力驱动
Strongly Powered by AbleSci AI