From Bandits to Monte-Carlo Tree Search: The Optimistic Principle Applied to Optimization and Planning

蒙特卡罗树搜索 数学优化 计算机科学 序列(生物学) 最优化问题 马尔可夫决策过程 随机优化 蒙特卡罗方法 数学 马尔可夫过程 遗传学 生物 统计
作者
Rémi Munos
出处
期刊:Foundations and trends in machine learning [Now Publishers]
卷期号:7 (1): 1-129 被引量:246
标识
DOI:10.1561/2200000038
摘要

From Bandits to Monte-Carlo Tree Search: The Optimistic Principle Applied to Optimization and Planning covers several aspects of the "optimism in the face of uncertainty" principle for large scale optimization problems under finite numerical budget. The monograph's initial motivation came from the empirical success of the so-called "Monte-Carlo Tree Search" method popularized in Computer Go and further extended to many other games as well as optimization and planning problems. It lays out the theoretical foundations of the field by characterizing the complexity of the optimization problems and designing efficient algorithms with performance guarantees. The main direction followed in this monograph consists in decomposing a complex decision making problem (such as an optimization problem in a large search space) into a sequence of elementary decisions, where each decision of the sequence is solved using a stochastic "multi-armed bandit" (mathematical model for decision making in stochastic environments). This defines a hierarchical search which possesses the nice feature of starting the exploration by a quasi-uniform sampling of the space and then focusing, at different scales, on the most promising areas (using the optimistic principle) until eventually performing a local search around the global optima of the function. This monograph considers the problem of function optimization in general search spaces (such as metric spaces, structured spaces, trees, and graphs) as well as the problem of planning in Markov decision processes. Its main contribution is a class of hierarchical optimistic algorithms with different algorithmic instantiations depending on whether the evaluations are noisy or noiseless and whether some measure of the local ''smoothness'' of the function around the global maximum is known or unknown.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助dongdong采纳,获得10
2秒前
复杂大象发布了新的文献求助10
3秒前
CipherSage应助路途采纳,获得10
3秒前
4秒前
5秒前
ppapppap发布了新的文献求助10
7秒前
脑洞疼应助一百采纳,获得10
8秒前
微微发布了新的文献求助10
9秒前
xzy998应助小屁鱼采纳,获得10
9秒前
慕青应助Doraemon采纳,获得10
14秒前
14秒前
朴实的小萱完成签到 ,获得积分10
16秒前
森水垚发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
18秒前
caspar完成签到,获得积分10
19秒前
vera发布了新的文献求助10
20秒前
20秒前
李喵喵发布了新的文献求助10
20秒前
菲菲公主完成签到,获得积分10
20秒前
20秒前
无与伦比发布了新的文献求助10
22秒前
小屁鱼完成签到,获得积分20
22秒前
顾矜应助风清扬采纳,获得10
22秒前
yu发布了新的文献求助10
23秒前
Jamesliu完成签到,获得积分10
23秒前
无限寻雪完成签到 ,获得积分10
24秒前
24秒前
25秒前
缓慢夜阑发布了新的文献求助10
26秒前
没名字qqq应助XIAOXIAO采纳,获得20
29秒前
29秒前
pretty_wy发布了新的文献求助10
30秒前
77关注了科研通微信公众号
31秒前
33秒前
缓慢夜阑完成签到,获得积分10
33秒前
华仔应助苦涩的面包采纳,获得10
34秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 760
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4147311
求助须知:如何正确求助?哪些是违规求助? 3684044
关于积分的说明 11639681
捐赠科研通 3378003
什么是DOI,文献DOI怎么找? 1853811
邀请新用户注册赠送积分活动 916255
科研通“疑难数据库(出版商)”最低求助积分说明 830240