随机梯度下降算法
加速度
梯度下降
方差减少
计算机科学
近端梯度法
梯度法
差异(会计)
缩小
数学优化
数学
算法
人工智能
统计
人工神经网络
物理
会计
蒙特卡罗方法
经典力学
业务
出处
期刊:Neural Information Processing Systems
日期:2014-12-08
卷期号:27: 1574-1582
被引量:178
摘要
Proximal gradient descent (PGD) and stochastic proximal gradient descent (SPGD) are popular methods for solving regularized risk minimization problems in machine learning and statistics. In this paper, we propose and analyze an accelerated variant of these methods in the mini-batch setting. This method incorporates two acceleration techniques: one is Nesterov's acceleration method, and the other is a variance reduction for the stochastic gradient. Accelerated proximal gradient descent (APG) and proximal stochastic variance reduction gradient (Prox-SVRG) are in a trade-off relationship. We show that our method, with the appropriate mini-batch size, achieves lower overall complexity than both APG and Prox-SVRG.
科研通智能强力驱动
Strongly Powered by AbleSci AI