Panel data from time series of cross-sections

队列 面板数据 计量经济学 代群效应 统计 样品(材料) 损耗 数学 人口学 医学 社会学 化学 牙科 色谱法
作者
Angus Deaton
出处
期刊:Journal of Econometrics [Elsevier BV]
卷期号:30 (1-2): 109-126 被引量:1339
标识
DOI:10.1016/0304-4076(85)90134-4
摘要

In many countries, there are few or no panel data, but there exists a series of independent cross-sections. For example, in the United Kingdom, there are no panel data on consumers' expenditure or on household labor supply, but there are several large household surveys carried out every year. Samples for these surveys are drawn anew each year, so that it is impossible to track individual households over time. This paper considers the possibility of tracking ‘cohorts’ through such data. A ‘cohort’ is defined as a group with fixed membership, individuals of which can be identified as they show up in the surveys. The most obvious example is an age cohort, e.g. all males born between 1945 and 1950, but there are other possibilities (Korean war veterans or founding members of the Econometric Society). Consider any economic relationship of interest that is linear in parameters (but not necessarily in variables). Corresponding to individual behavior, there will exist a cohort version of the relationship of the same form, but with cohort means replacing individual observations. If there are additive individual fixed effects, there will be corresponding additive cohort fixed effects. Further, the sample cohort means from the surveys are consistent but error-ridden estimates of the true cohort means. Hence, provided errors-in-variables techniques are used (and error variances and covariances can be estimated from the surveys), the sample cohort means can be used as panel data for estimating the relationship. Such data are immune to attrition bias and can be extended for long time periods. There is also evidence to suggest that the errors in variables problems may be just as severe for genuine panel data; in the created panels considered here, the problem is controllable. The paper discusses appropriate errors in variables estimators, with and without fixed effects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助明天采纳,获得10
1秒前
2秒前
2秒前
hailiangzheng发布了新的文献求助10
3秒前
4秒前
4秒前
pp发布了新的文献求助10
4秒前
南非的猫发布了新的文献求助10
6秒前
包子完成签到,获得积分10
6秒前
6秒前
个性归尘应助SneaPea采纳,获得50
7秒前
7秒前
8秒前
所所应助似水流年采纳,获得10
10秒前
13秒前
13秒前
留猪完成签到,获得积分10
14秒前
16秒前
Lee完成签到,获得积分10
17秒前
17秒前
18秒前
20秒前
科研通AI5应助拼搏的败采纳,获得10
20秒前
20秒前
20秒前
Solaris发布了新的文献求助10
20秒前
小浩爱科研完成签到,获得积分10
21秒前
lyl发布了新的文献求助30
22秒前
勤奋幻柏完成签到,获得积分10
22秒前
故意的乐菱完成签到,获得积分20
23秒前
SciGPT应助sshusband采纳,获得10
24秒前
24秒前
24秒前
zzz发布了新的文献求助10
25秒前
明天完成签到,获得积分20
25秒前
26秒前
26秒前
26秒前
Owen应助小浩爱科研采纳,获得10
26秒前
科研通AI5应助打水不打饭采纳,获得10
27秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Potential of Plant–Plant Communication to Improve Sustainable Pest Control 200
Gothic forms of feminine fictions 200
Solving Nonlinear Equations with Newton's Method 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836441
求助须知:如何正确求助?哪些是违规求助? 3378751
关于积分的说明 10505780
捐赠科研通 3098362
什么是DOI,文献DOI怎么找? 1706460
邀请新用户注册赠送积分活动 821062
科研通“疑难数据库(出版商)”最低求助积分说明 772431