Forecasting craniofacial growth in individuals with class III malocclusion by computational modelling

颅面 聚类分析 头影测量 计算机科学 班级(哲学) 错牙合 模糊聚类 口腔正畸科 数学 人工智能 医学 精神科
作者
Pietro Auconi,Marco Scazzocchio,Efisio Defraia,James A. McNamara,Lorenzo Franchi
出处
期刊:European Journal of Orthodontics [Oxford University Press]
卷期号:36 (2): 207-216 被引量:25
标识
DOI:10.1093/ejo/cjt036
摘要

To develop a mathematical model that adequately represented the pattern of craniofacial growth in class III subject consistently, with the goal of using this information to make growth predictions that could be amenable to longitudinal verification and clinical use.A combination of computational techniques (i.e. Fuzzy clustering and Network analysis) was applied to cephalometric data derived from 429 untreated growing female patients with class III malocclusion to visualize craniofacial growth dynamics and correlations. Four age groups of subjects were examined individually: from 7 to 9 years of age, from 10 to 12 years, from 13 to 14 years, and from 15 to 17 years.The connections between pathway components of class III craniofacial growth can be visualized from Network profiles. Fuzzy clustering analysis was able to define further growth patterns and coherences of the traditionally reported dentoskeletal characteristics of this structural imbalance. Craniofacial growth can be visualized as a biological, space-constraint-based optimization process; the prediction of individual growth trajectories depends on the rate of membership to a specific 'winner' cluster, i.e. on a specific individual growth strategy. The reliability of the information thus gained was tested to forecast craniofacial growth of 28 untreated female class III subjects followed longitudinally.The combination of Fuzzy clustering and Network algorithms allowed the development of principles for combining multiple auxological cephalometric features into a joint global model and to predict the individual risk of the facial pattern imbalance during growth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
kisswind发布了新的文献求助10
2秒前
花花完成签到,获得积分10
3秒前
杨咩咩完成签到 ,获得积分10
4秒前
鳗鱼凡波发布了新的文献求助10
6秒前
JINCHANG完成签到,获得积分10
6秒前
追寻梦之完成签到 ,获得积分10
6秒前
7秒前
失眠醉易应助131949采纳,获得20
10秒前
12秒前
12秒前
一帆风顺发布了新的文献求助10
12秒前
zhangyx完成签到 ,获得积分0
12秒前
p454q完成签到 ,获得积分10
12秒前
14秒前
bob完成签到 ,获得积分10
15秒前
关显锋完成签到,获得积分10
15秒前
15秒前
16秒前
苹果问安完成签到,获得积分10
16秒前
nana发布了新的文献求助10
17秒前
moyawen发布了新的文献求助10
19秒前
星宿陨完成签到 ,获得积分10
20秒前
131949完成签到,获得积分20
20秒前
柔弱的绮菱完成签到,获得积分10
21秒前
sunc发布了新的文献求助10
21秒前
薛定谔的猫完成签到,获得积分10
22秒前
111完成签到 ,获得积分10
23秒前
汉堡包应助wys2493采纳,获得30
23秒前
Lucas完成签到,获得积分10
24秒前
无限白易应助sciscisci采纳,获得10
25秒前
科研通AI5应助moyawen采纳,获得10
25秒前
25秒前
physicalproblem完成签到,获得积分10
26秒前
Mo完成签到,获得积分10
28秒前
天天快乐应助sunc采纳,获得10
28秒前
Wei完成签到 ,获得积分10
30秒前
玉汝于成发布了新的文献求助10
31秒前
打打应助科研通管家采纳,获得10
32秒前
天天快乐应助科研通管家采纳,获得10
32秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841907
求助须知:如何正确求助?哪些是违规求助? 3383914
关于积分的说明 10532005
捐赠科研通 3104182
什么是DOI,文献DOI怎么找? 1709532
邀请新用户注册赠送积分活动 823313
科研通“疑难数据库(出版商)”最低求助积分说明 773878