计算机科学
矩阵分解
独立成分分析
张量(固有定义)
理论计算机科学
线性代数
代数运算
张量代数
盲信号分离
多项式的
子空间拓扑
信号处理
人工智能
基质(化学分析)
代数数
数学
域代数上的
当前代数
频道(广播)
计算机网络
雷达
电信
几何学
乔丹代数
纯数学
物理
特征向量
量子力学
复合材料
材料科学
数学分析
作者
Andrzej Cichocki,Danilo P. Mandic,Lieven De Lathauwer,Guoxu Zhou,Qibin Zhao,César F. Caiafa,Anh Huy Phan
标识
DOI:10.1109/msp.2013.2297439
摘要
© 1991-2012 IEEE. The widespread use of multisensor technology and the emergence of big data sets have highlighted the limitations of standard flat-view matrix models and the necessity to move toward more versatile data analysis tools. We show that higher-order tensors (i.e., multiway arrays) enable such a fundamental paradigm shift toward models that are essentially polynomial, the uniqueness of which, unlike the matrix methods, is guaranteed under very mild and natural conditions. Benefiting from the power of multilinear algebra as their mathematical backbone, data analysis techniques using tensor decompositions are shown to have great flexibility in the choice of constraints which match data properties and extract more general latent components in the data than matrix-based methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI