外渗
黑色素瘤
转移
细胞因子
癌症研究
免疫系统
癌细胞
内皮
免疫学
医学
趋化性
癌症
整合素
病理
内科学
受体
作者
Sung Jin Huh,Shile Liang,Arati Sharma,Cheng Dong,Gavin P. Robertson
出处
期刊:Cancer Research
[American Association for Cancer Research]
日期:2010-07-08
卷期号:70 (14): 6071-6082
被引量:331
标识
DOI:10.1158/0008-5472.can-09-4442
摘要
It is unknown why only a minority of circulating tumor cells trapped in lung capillaries form metastases and involvement of immune cells remains uncertain. A novel model has been developed in this study showing that neutrophils regulate lung metastasis development through physical interaction and anchoring of circulating tumor cells to endothelium. Human melanoma cells were i.v. injected into nude mice leading to the entrapment of many cancer cells; however, 24 hours later, very few remained in the lungs. In contrast, injection of human neutrophils an hour after tumor cell injection increased cancer cell retention by approximately 3-fold. Entrapped melanoma cells produced and secreted high levels of a cytokine called interleukin-8 (IL-8), attracting neutrophils and increasing tethering beta(2) integrin expression by 75% to 100%. Intercellular adhesion molecule-1 on melanoma cells and beta(2) integrin on neutrophils interacted, promoting anchoring to vascular endothelium. Decreasing IL-8 secretion from melanoma cells lowered extracellular levels by 20% to 50%, decreased beta(2) integrin on neutrophils by approximately 50%, and reduced neutrophil-mediated extravasation by 25% to 60%, resulting in approximately 50% fewer melanoma cells being tethered to endothelium and retained in lungs. Thus, transendothelial migration and lung metastasis development decreased by approximately 50%, showing that targeting IL-8 in melanoma cells has the potential to decrease metastasis development by disrupting interaction with neutrophils.
科研通智能强力驱动
Strongly Powered by AbleSci AI