已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting first molar width using virtual models of dental arches

医学 拱门 臼齿 牙弓 口腔正畸科 牙科 结构工程 工程类
作者
Seung‐Pyo Lee,Ralph DeLong,James S. Hodges,Kazuo Hayashi,Jae Bong Lee
出处
期刊:Clinical Anatomy [Wiley]
卷期号:21 (1): 27-32 被引量:12
标识
DOI:10.1002/ca.20580
摘要

In dentistry, large regions of dentition often are restored with minimal information about the original anatomy. The ability to predict missing anatomy from existing anatomy would aid such restorations. This study investigated the relationship between first molar mesial-distal width and arch shape using newly defined reference points and three-dimensional (3D) digital methods. Full-mouth dental stone casts from 167 dental students were scanned and rendered as 3D virtual models. Maxillary and mandibular arch lengths and widths and first molar mesial-distal widths were measured on the virtual models using new definitions incorporating virtual planes. A linear mixed model of the first molar width regressed on the other measurements was done. Intraobserver reproducibility was evaluated by means of intraclass correlation (ICC) and standard deviation of measurement error (SDME). All measured distances were averaged as a combined group and as gender groups. The correlation coefficients between the maxillary and mandibular first molar widths were over 0.70 (P < 0.01). Intraobserver error was small. ICCs were over 0.92 and SDMEs were from 0.11 to 0.21 mm. Arch dimensions and first molar widths were defined and measured. Regression equations were calculated for predicting first molar width. The prediction of first molar width using arch dimension is essential for virtual designing of missing first molars. This approach also provides reliable reference point definitions for the virtual dental model which was impossible with traditional measurement methods. Therefore, this study would be helpful for understanding the 3D anatomy of dental arch and fabrication of automatic prosthodontic restorations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助犹豫溪灵采纳,获得10
2秒前
2秒前
zgz732完成签到 ,获得积分10
4秒前
星星轨迹发布了新的文献求助10
4秒前
落寞依珊发布了新的文献求助10
4秒前
ZSR完成签到,获得积分10
5秒前
7秒前
cdercder应助香菜公主采纳,获得10
11秒前
水1111发布了新的文献求助10
12秒前
13秒前
星辰大海应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得10
14秒前
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
田様应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
15秒前
镜中男人发布了新的文献求助10
16秒前
18秒前
z11完成签到,获得积分10
19秒前
22秒前
尾状叶完成签到 ,获得积分10
22秒前
24秒前
24秒前
26秒前
从心随缘发布了新的文献求助200
27秒前
乐乐发布了新的文献求助10
29秒前
zkji发布了新的文献求助10
29秒前
科研通AI5应助淡定智采纳,获得10
31秒前
yy发布了新的文献求助10
31秒前
司武梅发布了新的文献求助10
31秒前
石莫言发布了新的文献求助10
32秒前
FashionBoy应助李二牛采纳,获得20
34秒前
35秒前
herdy完成签到,获得积分10
40秒前
40秒前
在水一方应助陶1122采纳,获得10
43秒前
46秒前
YH应助ZHI采纳,获得50
47秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Study of enhancing employee engagement at workplace by adopting internet of things 200
Champagne & Shambles: The Arkwright's and the Country House in Crisis 200
The Arkwrights: Spinners of Fortune 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837178
求助须知:如何正确求助?哪些是违规求助? 3379511
关于积分的说明 10509156
捐赠科研通 3099119
什么是DOI,文献DOI怎么找? 1706922
邀请新用户注册赠送积分活动 821329
科研通“疑难数据库(出版商)”最低求助积分说明 772536