A novel hybrid proline-rich type gene GsEARLI17 from Glycine soja participated in leaf cuticle synthesis and plant tolerance to salt and alkali stresses

拟南芥 脯氨酸 生物 大豆 植物生理学 表皮(毛发) 甘氨酸 拟南芥 植物 转基因作物 野生型 生物化学
作者
Ailin Liu,Yang Yu,Rongtian Li,Xiangbo Duan,Dan Zhu,Xiaoli Sun,Huizi Duanmu,Yanming Zhu
出处
期刊:Plant Cell Tissue and Organ Culture [Springer Science+Business Media]
卷期号:121 (3): 633-646 被引量:7
标识
DOI:10.1007/s11240-015-0734-2
摘要

Recent discoveries showed that hybrid proline rich type proteins were involved in plant responses to several environmental stresses. However, little is known about their roles in plant alkali stress adaptation, especially in wild soybean. Here, we isolated and characterized GsEARLI17, a novel the hybrid proline-rich protein type EARLI family gene from Glycine soja. Bioinformatic analysis showed that GsEARLI17 protein contained a conserved N-terminus hybrid proline-rich domain in and a C-terminus 8CM domain. Transcript abundance of GsEARLI17 was higher in young tissues than that in old tissues, and induced following exposure to salt and alkali treatments. GsEARLI17 overexpression in Arabidopsis influenced cuticles formation, as evidenced by thicker cuticles of transgenic lines, and enhanced plant tolerance to salt stress. Further observation was found that compared to the wild type Arabidopsis, overexpression of GsEARLI17 in Arabidopsis improved seed germination with higher leaf opening and greening rate during the early stages under alkali stress. GsEARLI17 exhibited enhanced alkaline tolerance with higher chlorophyll content, and lower malondialdehyde content at the adult developmental stage, and the expression levels of some alkali stress response marker genes NADP-ME, H + Ppase were higher in the GsEARLI17 overexpression lines than in wild-type plants. Taken together we suggest that GsEARLI17 reveal a positive role in enhancing plant tolerance of alkali stress in Arabidopsis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
欣喜忻完成签到,获得积分10
1秒前
科研通AI5应助豆豆可采纳,获得10
2秒前
量子星尘发布了新的文献求助30
3秒前
3秒前
3秒前
科研通AI2S应助零源采纳,获得10
4秒前
4秒前
king完成签到,获得积分10
4秒前
默默毛豆完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助50
4秒前
4秒前
5秒前
lyj发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
6秒前
舒适的皮皮虾完成签到,获得积分10
6秒前
lululu发布了新的文献求助10
7秒前
7秒前
好好学习完成签到,获得积分10
8秒前
577发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
10秒前
10秒前
xun应助橙子采纳,获得10
10秒前
nnin发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
drinkfish完成签到,获得积分10
11秒前
12秒前
oneday完成签到,获得积分10
12秒前
12秒前
13秒前
小蘑菇应助二二采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
wanci应助健壮的夕阳采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4663495
求助须知:如何正确求助?哪些是违规求助? 4045304
关于积分的说明 12513037
捐赠科研通 3737731
什么是DOI,文献DOI怎么找? 2064069
邀请新用户注册赠送积分活动 1093700
科研通“疑难数据库(出版商)”最低求助积分说明 974309