亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Localization and biological activities of melatonin in intact and diseased gastrointestinal tract (GIT).

褪黑素 松果体细胞 松果体 生物 内科学 内分泌学 旁分泌信号 内分泌系统 胃肠道 肠内分泌细胞 内分泌腺 受体 激素 生物化学 医学
作者
Stanisław J. Konturek,Peter Christopher Konturek,Iwona Brzozowska,Michał Pawlik,Zbigniew Śliwowski,Marta Cześnikiewicz-Guzik,Slawonir Kwiecien,Tomasz Brzozowski,George A. Bubenik,Wiesław W. Pawlik
出处
期刊:PubMed 卷期号:58 (3): 381-405 被引量:63
链接
标识
摘要

Melatonin (MT), an indole formed enzymatically from L-trytophan (Trp), was first discovered in the bovine pineal gland in 1958 by Lerner et al. Melatonin is the most versatile and ubiquitous hormonal molecule produced not only in the pineal gland but also in various other tissues of invertebrates and vertebrates, particularly in the gastrointestinal tract (GIT). This review focuses on the localization, production, metabolism and the functions of MT in GIT and the duodenal unit (liver, biliary routes and pancreas), where multi-step biosynthetic pathways of this indole, similar to those in pinealocytes, have been identified. These biosynthetic steps of MT, including two major rate limiting enzymes; arylalkylamine-N-acetyltransferase (AA-NAT) and hydroxyindole-O-methyltransferase (HIOMT), transforming L-tryptophan (Trp), originally identified in pinealocytes, have been also detected in entero-endocrine (EE) cells of GIT, where this indole appears to act in endocrine, paracrine and/or luminal pathway directly or through G-protein coupled MT receptors. Studies of the distribution of MT in GIT mucosa showed that this indole is generated in GIT in much larger amounts than it is produced in the pineal gland. Melatonin acts in GIT, partly locally in paracrine fashion and is partly released into portal circulation, to be taken up by the liver. It is then metabolized and excreted with the bile to small bowel and finally returns to liver through entero-hepatic circulation. The production of MT by the pineal gland shows circadian rhythm with high night-time surge, especially at younger age, followed by the fall during the day-light time. As a highly lipophylic substance, MT reaches all body cells within minutes, thus, serving as a convenient circadian timing signal. Following pinealectomy, the light/dark cycle of plasma MT levels disappears, while its day-time blood concentration is maintained mainly due to its release from the GIT. According to our experience, after oral application of Trp, the plasma MT increases in dose-dependent manner both in intact and pinealectomized animals and humans, indicating that GIT but not the pineal gland is a source of this indole. In GIT MT exhibits a wide spectrum of activities such as circadian entrainment, antioxidant and free radicals scavenging activity, Melatonin (MT), an indole formed enzymatically from L-trytophan (Trp), was first discovered in the bovine pineal gland in 1958 by Lerner et al. Melatonin is the most versatile and ubiquitous hormonal molecule produced not only in the pineal gland but also in various other tissues of invertebrates and vertebrates, particularly in the gastrointestinal tract (GIT). This review focuses on the localization, production, metabolism and the functions of MT in GIT and the duodenal unit (liver, biliary routes and pancreas), where multi-step biosynthetic pathways of this indole, similar to those in pinealocytes, have been identified. These biosynthetic steps of MT, including two major rate limiting enzymes; arylalkylamine-N-acetyltransferase (AA-NAT) and hydroxyindole-O-methyltransferase (HIOMT), transforming L-tryptophan (Trp), originally identified in pinealocytes, have been also detected in entero-endocrine (EE) cells of GIT, where this indole appears to act in endocrine, paracrine and/or luminal pathway directly or through G-protein coupled MT receptors. Studies of the distribution of MT in GIT mucosa showed that this indole is generated in GIT in much larger amounts than it is produced in the pineal gland. Melatonin acts in GIT, partly locally in paracrine fashion and is partly released into portal circulation, to be taken up by the liver. It is then metabolized and excreted with the bile to small bowel and finally returns to liver through entero-hepatic circulation. The production of MT by the pineal gland shows circadian rhythm with high night-time surge, especially at younger age, followed by the fall during the day-light time. As a highly lipophylic substance, MT reaches all body cells within minutes, thus, serving as a convenient circadian timing signal. Following pinealectomy, the light/dark cycle of plasma MT levels disappears, while its day-time blood concentration is maintained mainly due to its release from the GIT. According to our experience, after oral application of Trp, the plasma MT increases in dose-dependent manner both in intact and pinealectomized animals and humans, indicating that GIT but not the pineal gland is a source of this indole. In GIT MT exhibits a wide spectrum of activities such as circadian entrainment, antioxidant and free radicals scavenging activity, cytoprotective, anti-inflammatory and healing efficacy of various GIT lesions such as esophagitis, gastritis, peptic ulcer, pancreatitis and colitis. This review concentrates on the generation and pathophysiological implication of MT in GIT and related organs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
16秒前
ceeray23发布了新的文献求助20
19秒前
24秒前
24秒前
39秒前
所所应助科研通管家采纳,获得10
39秒前
oi完成签到 ,获得积分10
49秒前
大个应助计划采纳,获得30
50秒前
1分钟前
胖小羊完成签到 ,获得积分10
1分钟前
NINI完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
神医magical发布了新的文献求助10
1分钟前
yishang发布了新的文献求助10
1分钟前
1分钟前
愉快的犀牛完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
馅饼完成签到,获得积分10
1分钟前
1分钟前
nenoaowu发布了新的文献求助10
1分钟前
王王碎冰冰应助神医magical采纳,获得10
1分钟前
计划发布了新的文献求助30
2分钟前
无名应助philip采纳,获得20
2分钟前
2分钟前
Rebeccaiscute完成签到 ,获得积分10
2分钟前
2分钟前
小伙子完成签到,获得积分10
2分钟前
Kristopher完成签到 ,获得积分10
3分钟前
丘比特应助200308156313采纳,获得10
3分钟前
Jojo发布了新的文献求助30
3分钟前
脑洞疼应助tigerli采纳,获得10
3分钟前
3分钟前
200308156313发布了新的文献求助10
3分钟前
3分钟前
200308156313完成签到,获得积分20
3分钟前
Orange应助zoomer采纳,获得10
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628321
求助须知:如何正确求助?哪些是违规求助? 4716547
关于积分的说明 14964063
捐赠科研通 4786065
什么是DOI,文献DOI怎么找? 2555581
邀请新用户注册赠送积分活动 1516838
关于科研通互助平台的介绍 1477380