亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

HASCO: Towards Agile HArdware and Software CO-design for Tensor Computation

计算机科学 软件 敏捷软件开发 软件开发
作者
Qingcheng Xiao,Size Zheng,Bingzhe Wu,Pengcheng Xu,Xuehai Qian,Yun Liang
出处
期刊:International Symposium on Computer Architecture 被引量:22
标识
DOI:10.1109/isca52012.2021.00086
摘要

Tensor computations overwhelm traditional general-purpose computing devices due to the large amounts of data and operations of the computations. They call for a holistic solution composed of both hardware acceleration and software mapping. Hardware/software (HW/SW) co-design optimizes the hardware and software in concert and produces high-quality solutions. There are two main challenges in the co-design flow. First, multiple methods exist to partition tensor computation and have different impacts on performance and energy efficiency. Besides, the hardware part must be implemented by the intrinsic functions of spatial accelerators. It is hard for programmers to identify and analyze the partitioning methods manually. Second, the overall design space composed of HW/SW partitioning, hardware optimization, and software optimization is huge. The design space needs to be efficiently explored. To this end, we propose an agile co-design approach HASCO that provides an efficient HW/SW solution to dense tensor computation. We use tensor syntax trees as the unified IR, based on which we develop a two-step approach to identify partitioning methods. For each method, HASCO explores the hardware and software design spaces. We propose different algorithms for the explorations, as they have distinct objectives and evaluation costs. Concretely, we develop a multi-objective Bayesian optimization algorithm to explore hardware optimization. For software optimization, we use heuristic and Q-learning algorithms. Experiments demonstrate that HASCO achieves a 1.25X to 1.44X latency reduction through HW/SW co-design compared with developing the hardware and software separately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyy发布了新的文献求助10
4秒前
5秒前
大模型应助马壮壮采纳,获得10
5秒前
Titi完成签到,获得积分10
9秒前
勤劳慕梅发布了新的文献求助10
11秒前
腿腿完成签到,获得积分10
13秒前
脑洞疼应助yyy采纳,获得10
14秒前
迷途羔羊完成签到 ,获得积分10
17秒前
kento完成签到,获得积分0
21秒前
橙子味的邱憨憨完成签到 ,获得积分10
22秒前
萨塔喵关注了科研通微信公众号
24秒前
33秒前
许三问完成签到 ,获得积分0
44秒前
d00007完成签到,获得积分20
46秒前
46秒前
XJT007完成签到 ,获得积分10
48秒前
萨塔喵发布了新的文献求助10
51秒前
1分钟前
只爱吃肠粉完成签到,获得积分10
1分钟前
iceink发布了新的文献求助50
1分钟前
liyu完成签到 ,获得积分10
1分钟前
Demi_Ming完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
xixi应助月月采纳,获得10
1分钟前
superpharm发布了新的文献求助10
1分钟前
狂野剑通完成签到,获得积分10
2分钟前
iceink完成签到,获得积分10
2分钟前
烟花应助superpharm采纳,获得10
2分钟前
2分钟前
林迁发布了新的文献求助10
2分钟前
冷傲山彤发布了新的文献求助10
2分钟前
2分钟前
iceink发布了新的文献求助20
2分钟前
月昔完成签到,获得积分10
2分钟前
2分钟前
神勇访蕊完成签到,获得积分10
2分钟前
神勇访蕊发布了新的文献求助10
2分钟前
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782631
求助须知:如何正确求助?哪些是违规求助? 3328049
关于积分的说明 10234257
捐赠科研通 3042990
什么是DOI,文献DOI怎么找? 1670427
邀请新用户注册赠送积分活动 799680
科研通“疑难数据库(出版商)”最低求助积分说明 758971