肌球蛋白轻链激酶
封堵器
木犀草素
MAPK/ERK通路
化学
磷酸化
类黄酮
紧密连接
生物化学
细胞生物学
药理学
生物
抗氧化剂
作者
Jinwen Yuan,Siyan Che,Li Zhang,Zheng Ruan
标识
DOI:10.1021/acs.jafc.1c00199
摘要
Luteolin, a dietary flavonoid, has gained increasing interest as an intestinal protectant. This study aimed to evaluate the reparative effect of luteolin against ethanol-induced intestinal barrier damage in a Caco-2 cell monolayer model and the potential mechanisms. Luteolin attenuated ethanol-induced intestinal barrier injury, by increasing transepithelial monolayer resistance (TEER, 27.75 ± 14.75% of the ethanol group, p < 0.01), reducing Lucifer yellow flux (13.21 ± 1.23% of ethanol group, p < 0.01), and upregulating the expression of tight junction (TJ) proteins zonulin occludin-1 (ZO-1), occludin, and claudin-1 (37.963 ± 8.62%, 17.69 ± 7.35%, and 29.40 ± 8.08% of the ethanol group, respectively, p < 0.01). Further mechanistic studies showed that luteolin suppressed myosin light chain 2 (MLC) phosphorylation, myosin light chain kinase (MLCK) activation, nuclear factor kappa-B (NF-κB) nuclear translocation, and mitogen-activated-protein-kinase (MAPK) phosphorylation. Moreover, luteolin also acted as antioxidants indirectly by upregulating antioxidant-responsive-element (ARE) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) nuclear translocation to relieve ethanol-induced oxidative damage and TJ dysfunction. The results of the study indicate that luteolin may play an effective role in relieving intestinal barrier damage, and this effect is at least partially due to its indirect antioxidant capacity.
科研通智能强力驱动
Strongly Powered by AbleSci AI