Development of QSAR models for prediction of fish bioconcentration factors using physicochemical properties and molecular descriptors with machine learning algorithms

数量结构-活动关系 生物浓缩 分子描述符 随机森林 机器学习 决策树 梯度升压 支持向量机 计算机科学 人工智能 生物系统 化学 生化工程 环境化学 生物累积 生物 工程类 渔业
作者
Yoshiyuki Kobayashi,Kenichi Yoshida
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:63: 101285-101285 被引量:16
标识
DOI:10.1016/j.ecoinf.2021.101285
摘要

Bioconcentration factors (BCFs) are indicators of the accumulation of chemical substances in organisms; they play an important role in the environmental risk assessment of various chemical substances. Experiments to obtain BCFs are expensive and time consuming; hence, it is desirable to predictively determine BCF during the early stage of chemical development. In this study, we developed a quantitative structure-activity relationship (QSAR) model using physicochemical properties, environmental fate endpoints, and molecular descriptors. Physicochemical properties and environmental fate endpoints were generated by OPERA, which is a QSAR software. Moreover, we calculated the molecular descriptors using Mordred. A gradient boosting decision tree model was developed as a machine learning model, and multiple linear regression and support vector machine models were developed for comparison. Our developed model showed that the coefficients of determination (R2) of the training and test sets were 0.923 and 0.863, respectively, which are higher than the predictions of the previous model and values calculated by OPERA. The results obtained from the present study suggest that an accurate QSAR model can be developed using the physicochemical properties, environmental fate endpoints, and molecular descriptors calculated from the chemical structure without actually conducting BCF experiments. The model could be one of the choice for the preliminary risk assessment without investing in a large number of BCF experiments during the early development stages of candidate chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
易止完成签到 ,获得积分10
刚刚
欢呼的茗茗完成签到 ,获得积分10
1秒前
方方完成签到 ,获得积分10
1秒前
1秒前
丰富的慕卉完成签到,获得积分10
3秒前
孙晓燕完成签到 ,获得积分10
6秒前
10秒前
唐泽雪穗发布了新的文献求助30
10秒前
xczhu完成签到,获得积分0
11秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
Wayne完成签到 ,获得积分10
15秒前
忐忑的中心完成签到 ,获得积分10
16秒前
红糖订书机完成签到 ,获得积分10
21秒前
DD完成签到,获得积分10
21秒前
Lucas应助JUAN采纳,获得10
24秒前
量子星尘发布了新的文献求助10
25秒前
娜娜完成签到 ,获得积分10
25秒前
YHBBZ完成签到 ,获得积分10
25秒前
窝窝头完成签到 ,获得积分10
30秒前
CipherSage应助lin采纳,获得10
34秒前
zhangj696完成签到,获得积分10
34秒前
JUAN完成签到,获得积分10
36秒前
yinyin完成签到 ,获得积分10
36秒前
现代期待完成签到,获得积分10
37秒前
41秒前
握瑾怀瑜完成签到 ,获得积分0
41秒前
weng完成签到,获得积分10
42秒前
wxh完成签到 ,获得积分10
47秒前
uouuo完成签到 ,获得积分10
49秒前
羊白玉完成签到 ,获得积分0
50秒前
缥缈的觅风完成签到 ,获得积分10
50秒前
量子星尘发布了新的文献求助10
52秒前
apt完成签到 ,获得积分10
56秒前
apt完成签到 ,获得积分10
56秒前
天真的大船完成签到 ,获得积分10
57秒前
Beverly完成签到,获得积分10
1分钟前
鹤昀完成签到 ,获得积分10
1分钟前
萱棚完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5066726
求助须知:如何正确求助?哪些是违规求助? 4288676
关于积分的说明 13360388
捐赠科研通 4108050
什么是DOI,文献DOI怎么找? 2249494
邀请新用户注册赠送积分活动 1254924
关于科研通互助平台的介绍 1187333