已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of QSAR models for prediction of fish bioconcentration factors using physicochemical properties and molecular descriptors with machine learning algorithms

数量结构-活动关系 生物浓缩 分子描述符 随机森林 机器学习 决策树 梯度升压 支持向量机 计算机科学 人工智能 生物系统 化学 生化工程 环境化学 生物累积 生物 工程类 渔业
作者
Yoshiyuki Kobayashi,Kenichi Yoshida
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:63: 101285-101285 被引量:16
标识
DOI:10.1016/j.ecoinf.2021.101285
摘要

Bioconcentration factors (BCFs) are indicators of the accumulation of chemical substances in organisms; they play an important role in the environmental risk assessment of various chemical substances. Experiments to obtain BCFs are expensive and time consuming; hence, it is desirable to predictively determine BCF during the early stage of chemical development. In this study, we developed a quantitative structure-activity relationship (QSAR) model using physicochemical properties, environmental fate endpoints, and molecular descriptors. Physicochemical properties and environmental fate endpoints were generated by OPERA, which is a QSAR software. Moreover, we calculated the molecular descriptors using Mordred. A gradient boosting decision tree model was developed as a machine learning model, and multiple linear regression and support vector machine models were developed for comparison. Our developed model showed that the coefficients of determination (R2) of the training and test sets were 0.923 and 0.863, respectively, which are higher than the predictions of the previous model and values calculated by OPERA. The results obtained from the present study suggest that an accurate QSAR model can be developed using the physicochemical properties, environmental fate endpoints, and molecular descriptors calculated from the chemical structure without actually conducting BCF experiments. The model could be one of the choice for the preliminary risk assessment without investing in a large number of BCF experiments during the early development stages of candidate chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小k发布了新的文献求助10
1秒前
123稻稻人发布了新的文献求助10
1秒前
1秒前
深情安青应助烦死啦采纳,获得10
4秒前
在水一方应助可乐啊啊啊采纳,获得10
5秒前
10秒前
12秒前
体液分析师完成签到,获得积分10
12秒前
123稻稻人完成签到,获得积分10
13秒前
辰昜发布了新的文献求助10
15秒前
15秒前
18秒前
之组长了完成签到 ,获得积分10
18秒前
19秒前
和谐蛋蛋发布了新的文献求助10
19秒前
Ava应助科研通管家采纳,获得10
20秒前
ddd发布了新的文献求助10
20秒前
Rondab应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
Rondab应助科研通管家采纳,获得10
20秒前
Rondab应助科研通管家采纳,获得10
20秒前
在水一方应助科研通管家采纳,获得10
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
20秒前
20秒前
上官若男应助科研通管家采纳,获得200
20秒前
dengdengdeng完成签到,获得积分10
22秒前
灵巧大地完成签到,获得积分10
23秒前
23秒前
尔安发布了新的文献求助10
23秒前
浔城游侠完成签到,获得积分10
23秒前
科研通AI5应助阿智采纳,获得10
25秒前
可乐啊啊啊完成签到,获得积分10
27秒前
嘟嘟嘟嘟完成签到 ,获得积分10
27秒前
28秒前
28秒前
wang完成签到,获得积分10
33秒前
CWJ关注了科研通微信公众号
33秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
基于优化FAC程序的W9+大规模能级计算和基于上海高温超导EBIT装置的W16+可见光光谱研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4036366
求助须知:如何正确求助?哪些是违规求助? 3574430
关于积分的说明 11372648
捐赠科研通 3304780
什么是DOI,文献DOI怎么找? 1818988
邀请新用户注册赠送积分活动 892545
科研通“疑难数据库(出版商)”最低求助积分说明 814945