吸附
膜
污染
环境化学
废物管理
核化学
化学
有机化学
环境科学
生物化学
工程类
生物
生态学
作者
Tonghui Zhang,Peiyun Li,Siping Ding,Xuefen Wang
标识
DOI:10.1016/j.jhazmat.2021.127742
摘要
Rapid and thorough removal of heavy metal ions in wastewater is critical for the urgent need of clean water. Herein, we prepared a high-performance thin film nanofibrous composite (TFNC) membrane consisting of a polyacrylonitrile (PAN)-UiO-66-(COOH)2 composite nanofibrous substrate (CPAN) and a calcium alginate (CaAlg) skin layer. Owing to abundant adsorption sites of UiO-66-(COOH)2 MOF, the optimal CPAN-2 nanofibrous substrate showed excellent adsorption capacity for lead ions. The maximum Pb2+ adsorption capacity of CPAN-2 substrate calculated by Langmuir isotherm model was 254.5 mg/g. Meanwhile, due to the relatively loose structure of CaAlg skin layer, this TFNC membrane showed high water permeate flux about 50 L m-2h-1 at 0.1 MPa, and the rejection for dyes was higher than 95%. Therefore, CaAlg/CPAN TFNC membranes were appropriate for dynamic adsorption/filtration to remove Pb2+. Compared with original CaAlg/PAN membrane, the optimal CaAlg/CPAN TFNC membrane showed much better ability to treat Pb(II)-containing wastewater and had good recyclability. Most importantly, the CaAlg/CPAN TFNC membrane could treat 7659 L m-2 wastewater containing single lead ions under WHO drinking water standard, and effectively deal with more simulated lead-containing wastewater. This work could provide a substitutable solution for effective removal of heavy metal ions and other various contaminants in wastewater.
科研通智能强力驱动
Strongly Powered by AbleSci AI