亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Magnetic Resonance Radiomics and Machine-learning Models: An Approach for Evaluating Tumor-stroma Ratio in Patients with Pancreatic Ductal Adenocarcinoma

胰腺导管腺癌 医学 接收机工作特性 磁共振成像 无线电技术 逻辑回归 判别式 人工智能 放射科 机器学习 胰腺癌 内科学 计算机科学 癌症
作者
Yinghao Meng,Hao Zhang,Qi Li,Fang Liu,Xu Fang,Jing Li,Jieyu Yu,Xiaochen Feng,Jianping Lu,Yun Bian,Chengwei Shao
出处
期刊:Academic Radiology [Elsevier]
卷期号:29 (4): 523-535 被引量:19
标识
DOI:10.1016/j.acra.2021.08.013
摘要

To develop and validate a magnetic resonance imaging (MRI)-based machine learning classifier for evaluating the tumor-stroma ratio (TSR) in patients with pancreatic ductal adenocarcinoma (PDAC).In this retrospective study, 148 patients with PDAC underwent an MR scan and surgical resection. We used hematoxylin and eosin to quantify the TSR. For each patient, we extracted 1,409 radiomics features and reduced them using the least absolute shrinkage and selection operator logistic regression algorithm. The extreme gradient boosting (XGBoost) classifier was developed using a training set comprising 110 consecutive patients, admitted between December 2016 and December 2017. The model was validated in 38 consecutive patients, admitted between January 2018 and April 2018. We determined the performance of the XGBoost classifier based on its discriminative ability, calibration, and clinical utility.A log-rank test revealed significantly longer survival in the TSR-low group. The prediction model displayed good discrimination in the training (area under the curve [AUC], 0.82) and validation set (AUC, 0.78). While the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value for the training set were 77.14%, 75.00%, 0.76%, 0.84%, and 0.65%, respectively, those for the validation set were 58.33%, 92.86%, 0.71%, 0.93%, and 0.57%, respectively.We developed an XGBoost classifier based on MRI radiomics features, a non-invasive prediction tool that can evaluate the TSR of patients with PDAC. Moreover, it will provide a basis for interstitial targeted therapy selection and monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助LingYi采纳,获得10
1秒前
1秒前
小俊完成签到,获得积分10
7秒前
宣灵薇完成签到 ,获得积分0
7秒前
8秒前
妙玄完成签到,获得积分10
8秒前
自尊的腐都胖子完成签到,获得积分10
10秒前
11秒前
14秒前
19秒前
fly完成签到 ,获得积分10
19秒前
rwq完成签到 ,获得积分10
21秒前
23秒前
浮浮世世发布了新的文献求助10
25秒前
maliang666完成签到,获得积分10
34秒前
dolphin完成签到 ,获得积分0
40秒前
AQI完成签到,获得积分10
42秒前
小谢同学完成签到 ,获得积分10
43秒前
Yuan完成签到 ,获得积分10
47秒前
49秒前
WuFen完成签到 ,获得积分10
50秒前
ling关注了科研通微信公众号
50秒前
sfc999完成签到,获得积分10
53秒前
顾末发布了新的文献求助10
55秒前
Jasper应助sfc999采纳,获得10
57秒前
无花果应助科研通管家采纳,获得10
58秒前
爆米花应助科研通管家采纳,获得10
58秒前
XIONG发布了新的文献求助10
1分钟前
deswin完成签到,获得积分10
1分钟前
YBR完成签到 ,获得积分10
1分钟前
1分钟前
初始蜜蜂完成签到 ,获得积分10
1分钟前
andok完成签到,获得积分10
1分钟前
ling发布了新的文献求助10
1分钟前
1分钟前
binxman完成签到,获得积分10
1分钟前
maliang666发布了新的文献求助10
1分钟前
路过地球完成签到 ,获得积分10
1分钟前
妖九笙完成签到 ,获得积分10
1分钟前
山川日月完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422398
求助须知:如何正确求助?哪些是违规求助? 4537287
关于积分的说明 14156964
捐赠科研通 4453838
什么是DOI,文献DOI怎么找? 2443106
邀请新用户注册赠送积分活动 1434452
关于科研通互助平台的介绍 1411546