Magnetic Resonance Radiomics and Machine-learning Models: An Approach for Evaluating Tumor-stroma Ratio in Patients with Pancreatic Ductal Adenocarcinoma

胰腺导管腺癌 医学 接收机工作特性 磁共振成像 无线电技术 逻辑回归 判别式 人工智能 放射科 机器学习 胰腺癌 内科学 计算机科学 癌症
作者
Yinghao Meng,Hao Zhang,Qi Li,Fang Liu,Xu Fang,Jing Li,Jieyu Yu,Xiaochen Feng,Jianping Lu,Yun Bian,Chengwei Shao
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:29 (4): 523-535 被引量:11
标识
DOI:10.1016/j.acra.2021.08.013
摘要

To develop and validate a magnetic resonance imaging (MRI)-based machine learning classifier for evaluating the tumor-stroma ratio (TSR) in patients with pancreatic ductal adenocarcinoma (PDAC).In this retrospective study, 148 patients with PDAC underwent an MR scan and surgical resection. We used hematoxylin and eosin to quantify the TSR. For each patient, we extracted 1,409 radiomics features and reduced them using the least absolute shrinkage and selection operator logistic regression algorithm. The extreme gradient boosting (XGBoost) classifier was developed using a training set comprising 110 consecutive patients, admitted between December 2016 and December 2017. The model was validated in 38 consecutive patients, admitted between January 2018 and April 2018. We determined the performance of the XGBoost classifier based on its discriminative ability, calibration, and clinical utility.A log-rank test revealed significantly longer survival in the TSR-low group. The prediction model displayed good discrimination in the training (area under the curve [AUC], 0.82) and validation set (AUC, 0.78). While the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value for the training set were 77.14%, 75.00%, 0.76%, 0.84%, and 0.65%, respectively, those for the validation set were 58.33%, 92.86%, 0.71%, 0.93%, and 0.57%, respectively.We developed an XGBoost classifier based on MRI radiomics features, a non-invasive prediction tool that can evaluate the TSR of patients with PDAC. Moreover, it will provide a basis for interstitial targeted therapy selection and monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小张在努力完成签到 ,获得积分10
1秒前
柚子完成签到,获得积分10
1秒前
哈罗完成签到,获得积分10
1秒前
可可发布了新的文献求助10
1秒前
2秒前
YY完成签到,获得积分10
4秒前
酷炫迎波完成签到,获得积分10
4秒前
邵123456789完成签到,获得积分10
4秒前
SYLH应助dahuihui采纳,获得10
4秒前
易水寒完成签到,获得积分10
5秒前
科研狗完成签到,获得积分10
6秒前
6秒前
科研通AI5应助多肉丸子采纳,获得10
6秒前
sunsunsun完成签到,获得积分10
6秒前
科研圣手完成签到,获得积分10
7秒前
JOY关注了科研通微信公众号
7秒前
8秒前
8秒前
ddsgsd完成签到 ,获得积分10
8秒前
清脆的连虎完成签到,获得积分10
9秒前
上好佳完成签到 ,获得积分10
10秒前
领导范儿应助Erling采纳,获得10
10秒前
戈笙gg完成签到,获得积分10
10秒前
追梦小帅完成签到,获得积分10
10秒前
丽莫莫完成签到,获得积分10
10秒前
满眼喜欢遍布星河完成签到,获得积分10
10秒前
10秒前
噜噜晓完成签到 ,获得积分10
11秒前
希望天下0贩的0应助tomorrow采纳,获得10
12秒前
朴素的大树完成签到 ,获得积分10
12秒前
CipherSage应助欣慰土豆采纳,获得10
12秒前
柚子完成签到,获得积分10
12秒前
叽里咕噜完成签到,获得积分10
13秒前
京昭发布了新的文献求助30
13秒前
13秒前
指导灰完成签到 ,获得积分10
14秒前
贫穷的塔姆完成签到,获得积分10
14秒前
learnerZ_2023完成签到,获得积分10
15秒前
着慵懒时光的猫完成签到,获得积分10
15秒前
隐形曼青应助高正义采纳,获得10
16秒前
高分求助中
ISCN 2024 - An International System for Human Cytogenomic Nomenclature (2024) 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788621
求助须知:如何正确求助?哪些是违规求助? 3333855
关于积分的说明 10265174
捐赠科研通 3049972
什么是DOI,文献DOI怎么找? 1673781
邀请新用户注册赠送积分活动 802206
科研通“疑难数据库(出版商)”最低求助积分说明 760549