DSG-Net: Learning Disentangled Structure and Geometry for 3D Shape Generation

计算机科学 几何学 编码 几何处理 解析几何 复杂几何 几何本原 代表(政治) 计算机图形学 形状分析(程序分析) 人工智能 数学 多边形网格 计算机图形学(图像) 静态分析 生物化学 化学 政治 政治学 法学 基因 程序设计语言
作者
Jie Yang,Kaichun Mo,Yu‐Kun Lai,Leonidas Guibas,Lin Gao
出处
期刊:ACM Transactions on Graphics [Association for Computing Machinery]
卷期号:42 (1): 1-17 被引量:21
标识
DOI:10.1145/3526212
摘要

3D shape generation is a fundamental operation in computer graphics. While significant progress has been made, especially with recent deep generative models, it remains a challenge to synthesize high-quality shapes with rich geometric details and complex structures, in a controllable manner. To tackle this, we introduce DSG-Net, a deep neural network that learns a disentangled structured & geometric mesh representation for 3D shapes, where two key aspects of shapes, geometry and structure, are encoded in a synergistic manner to ensure plausibility of the generated shapes, while also being disentangled as much as possible. This supports a range of novel shape generation applications with disentangled control, such as interpolation of structure (geometry) while keeping geometry (structure) unchanged. To achieve this, we simultaneously learn structure and geometry through variational autoencoders (VAEs) in a hierarchical manner for both, with bijective mappings at each level. In this manner, we effectively encode geometry and structure in separate latent spaces, while ensuring their compatibility: the structure is used to guide the geometry and vice versa. At the leaf level, the part geometry is represented using a conditional part VAE, to encode high-quality geometric details, guided by the structure context as the condition. Our method not only supports controllable generation applications, but also produces high-quality synthesized shapes, outperforming state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wed应助王小新采纳,获得10
刚刚
随心发布了新的文献求助10
3秒前
剑指东方是为谁应助sensAn采纳,获得10
4秒前
惠向雁发布了新的文献求助30
4秒前
4秒前
chenlc971125完成签到 ,获得积分10
7秒前
dnnnsns完成签到,获得积分10
7秒前
vivian发布了新的文献求助10
7秒前
000应助缓慢的如波采纳,获得30
12秒前
王小新完成签到,获得积分10
14秒前
xx发布了新的文献求助10
14秒前
淡定的半梦完成签到 ,获得积分20
14秒前
未来完成签到,获得积分10
16秒前
欣喜的未来完成签到,获得积分20
17秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
桐桐应助科研通管家采纳,获得10
18秒前
搜集达人应助科研通管家采纳,获得30
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
Li应助科研通管家采纳,获得10
19秒前
大腚疯猪应助科研通管家采纳,获得20
19秒前
19秒前
19秒前
19秒前
yyryyrr发布了新的文献求助10
21秒前
hilknk完成签到,获得积分10
23秒前
24秒前
畅快的小兔子完成签到,获得积分10
25秒前
Orange应助xx采纳,获得10
26秒前
杨杨杨发布了新的文献求助200
28秒前
29秒前
某只橘猫君完成签到,获得积分10
30秒前
蔓越莓完成签到 ,获得积分10
31秒前
脑洞疼应助畅快的小兔子采纳,获得10
31秒前
32秒前
32秒前
34秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801432
求助须知:如何正确求助?哪些是违规求助? 3347164
关于积分的说明 10332162
捐赠科研通 3063465
什么是DOI,文献DOI怎么找? 1681720
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763852