Dysregulation of ILC3s unleashes progression and immunotherapy resistance in colon cancer

生物 抗性(生态学) 免疫疗法 免疫学 结直肠癌 癌症 癌症研究 生态学 遗传学
作者
Jérémy Goc,Mengze Lv,Nicholas J. Bessman,Anne-Laure Flamar,Sheena Sahota,Hiroaki Suzuki,Fei Teng,Gregory G. Putzel,Jri Live Cell Bank,Gérard Eberl,David R. Withers,Janelle C. Arthur,Manish A. Shah,Gregory F. Sonnenberg
出处
期刊:Cell [Elsevier]
卷期号:184 (19): 5015-5030.e16 被引量:77
标识
DOI:10.1016/j.cell.2021.07.029
摘要

•Profiling of human and mouse CRC reveals a substantial dysregulation of ILC3s•ILC3 and T cell interactions support microbiota that drives type-1 immunity•ILC3 impairment drives CRC progression and immunotherapy resistance in mice•Humans with altered ILC3s harbor microbiota that causes immunotherapy resistance Group 3 innate lymphoid cells (ILC3s) regulate immunity and inflammation, yet their role in cancer remains elusive. Here, we identify that colorectal cancer (CRC) manifests with altered ILC3s that are characterized by reduced frequencies, increased plasticity, and an imbalance with T cells. We evaluated the consequences of these changes in mice and determined that a dialog between ILC3s and T cells via major histocompatibility complex class II (MHCII) is necessary to support colonization with microbiota that subsequently induce type-1 immunity in the intestine and tumor microenvironment. As a result, mice lacking ILC3-specific MHCII develop invasive CRC and resistance to anti-PD-1 immunotherapy. Finally, humans with dysregulated intestinal ILC3s harbor microbiota that fail to induce type-1 immunity and immunotherapy responsiveness when transferred to mice. Collectively, these data define a protective role for ILC3s in cancer and indicate that their inherent disruption in CRC drives dysfunctional adaptive immunity, tumor progression, and immunotherapy resistance. Group 3 innate lymphoid cells (ILC3s) regulate immunity and inflammation, yet their role in cancer remains elusive. Here, we identify that colorectal cancer (CRC) manifests with altered ILC3s that are characterized by reduced frequencies, increased plasticity, and an imbalance with T cells. We evaluated the consequences of these changes in mice and determined that a dialog between ILC3s and T cells via major histocompatibility complex class II (MHCII) is necessary to support colonization with microbiota that subsequently induce type-1 immunity in the intestine and tumor microenvironment. As a result, mice lacking ILC3-specific MHCII develop invasive CRC and resistance to anti-PD-1 immunotherapy. Finally, humans with dysregulated intestinal ILC3s harbor microbiota that fail to induce type-1 immunity and immunotherapy responsiveness when transferred to mice. Collectively, these data define a protective role for ILC3s in cancer and indicate that their inherent disruption in CRC drives dysfunctional adaptive immunity, tumor progression, and immunotherapy resistance. Interactions between mammals and microbes profoundly impact cancer (Dzutsev et al., 2017Dzutsev A. Badger J.H. Perez-Chanona E. Roy S. Salcedo R. Smith C.K. Trinchieri G. Microbes and Cancer.Annu. Rev. Immunol. 2017; 35: 199-228Crossref PubMed Scopus (133) Google Scholar; Routy et al., 2018aRouty B. Gopalakrishnan V. Daillère R. Zitvogel L. Wargo J.A. Kroemer G. The gut microbiota influences anticancer immunosurveillance and general health.Nat. Rev. Clin. Oncol. 2018; 15: 382-396Crossref PubMed Scopus (227) Google Scholar; Helmink et al., 2019Helmink B.A. Khan M.A.W. Hermann A. Gopalakrishnan V. Wargo J.A. The microbiome, cancer, and cancer therapy.Nat. Med. 2019; 25: 377-388Crossref PubMed Scopus (372) Google Scholar). For example, several chronic infections are directly linked to cancer development (Garrett, 2015Garrett W.S. Cancer and the microbiota.Science. 2015; 348: 80-86Crossref PubMed Scopus (90) Google Scholar; Grivennikov et al., 2010Grivennikov S.I. Greten F.R. Karin M. Immunity, inflammation, and cancer.Cell. 2010; 140: 883-899Abstract Full Text Full Text PDF PubMed Scopus (7055) Google Scholar; de Martel and Franceschi, 2009de Martel C. Franceschi S. Infections and cancer: established associations and new hypotheses.Crit. Rev. Oncol. Hematol. 2009; 70: 183-194Crossref PubMed Scopus (186) Google Scholar; de Martel et al., 2020de Martel C. Georges D. Bray F. Ferlay J. Clifford G.M. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis.Lancet Glob. Health. 2020; 8: e180-e190Abstract Full Text Full Text PDF PubMed Scopus (446) Google Scholar). This occurs through a number of well-described mechanisms, and vaccination is an important approach to prevent these infection-associated cancers (Grivennikov et al., 2010Grivennikov S.I. Greten F.R. Karin M. Immunity, inflammation, and cancer.Cell. 2010; 140: 883-899Abstract Full Text Full Text PDF PubMed Scopus (7055) Google Scholar; de Martel and Franceschi, 2009de Martel C. Franceschi S. Infections and cancer: established associations and new hypotheses.Crit. Rev. Oncol. Hematol. 2009; 70: 183-194Crossref PubMed Scopus (186) Google Scholar; de Martel et al., 2020de Martel C. Georges D. Bray F. Ferlay J. Clifford G.M. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis.Lancet Glob. Health. 2020; 8: e180-e190Abstract Full Text Full Text PDF PubMed Scopus (446) Google Scholar). In contrast, mammals are continuously colonized with trillions of normally beneficial microbes, termed the microbiota, that also substantially impact cancer, but the mechanisms by which this occurs remain poorly understood (Dzutsev et al., 2017Dzutsev A. Badger J.H. Perez-Chanona E. Roy S. Salcedo R. Smith C.K. Trinchieri G. Microbes and Cancer.Annu. Rev. Immunol. 2017; 35: 199-228Crossref PubMed Scopus (133) Google Scholar; Garrett, 2015Garrett W.S. Cancer and the microbiota.Science. 2015; 348: 80-86Crossref PubMed Scopus (90) Google Scholar; Grivennikov et al., 2010Grivennikov S.I. Greten F.R. Karin M. Immunity, inflammation, and cancer.Cell. 2010; 140: 883-899Abstract Full Text Full Text PDF PubMed Scopus (7055) Google Scholar). One important connection with cancer is the ability of the microbiota to modulate the immune system and promote chronic inflammation (Belkaid and Hand, 2014Belkaid Y. Hand T.W. Role of the microbiota in immunity and inflammation.Cell. 2014; 157: 121-141Abstract Full Text Full Text PDF PubMed Scopus (2259) Google Scholar; Grivennikov et al., 2010Grivennikov S.I. Greten F.R. Karin M. Immunity, inflammation, and cancer.Cell. 2010; 140: 883-899Abstract Full Text Full Text PDF PubMed Scopus (7055) Google Scholar; Honda and Littman, 2012Honda K. Littman D.R. The microbiome in infectious disease and inflammation.Annu. Rev. Immunol. 2012; 30: 759-795Crossref PubMed Scopus (525) Google Scholar; Hanahan and Weinberg, 2011Hanahan D. Weinberg R.A. Hallmarks of cancer: the next generation.Cell. 2011; 144: 646-674Abstract Full Text Full Text PDF PubMed Scopus (40071) Google Scholar; Trinchieri, 2012Trinchieri G. Cancer and inflammation: an old intuition with rapidly evolving new concepts.Annu. Rev. Immunol. 2012; 30: 677-706Crossref PubMed Scopus (354) Google Scholar). This can occur in diseases such as inflammatory bowel disease (IBD), which is associated with a loss of immunologic tolerance, the development of inflammatory immune responses directed against intestinal microbiota (Maloy and Powrie, 2011Maloy K.J. Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease.Nature. 2011; 474: 298-306Crossref PubMed Scopus (1209) Google Scholar; Blander et al., 2017Blander J.M. Longman R.S. Iliev I.D. Sonnenberg G.F. Artis D. Regulation of inflammation by microbiota interactions with the host.Nat. Immunol. 2017; 18: 851-860Crossref PubMed Scopus (322) Google Scholar; Uhlig and Powrie, 2018Uhlig H.H. Powrie F. Translating Immunology into Therapeutic Concepts for Inflammatory Bowel Disease.Annu. Rev. Immunol. 2018; 36: 755-781Crossref PubMed Scopus (86) Google Scholar; Plichta et al., 2019Plichta D.R. Graham D.B. Subramanian S. Xavier R.J. Therapeutic Opportunities in Inflammatory Bowel Disease: Mechanistic Dissection of Host-Microbiome Relationships.Cell. 2019; 178: 1041-1056Abstract Full Text Full Text PDF PubMed Scopus (91) Google Scholar), and an increased risk for colorectal cancer (CRC) (Beaugerie and Itzkowitz, 2015Beaugerie L. Itzkowitz S.H. Cancers complicating inflammatory bowel disease.N. Engl. J. Med. 2015; 372: 1441-1452Crossref PubMed Scopus (309) Google Scholar). However, most CRC cases develop independently of IBD and yet are still directly linked with substantial microbiota-dependent engagement of inflammatory pathways, such as the cytokine interleukin (IL)-23 and associated T helper (TH)17 cell responses (Langowski et al., 2006Langowski J.L. Zhang X. Wu L. Mattson J.D. Chen T. Smith K. Basham B. McClanahan T. Kastelein R.A. Oft M. IL-23 promotes tumour incidence and growth.Nature. 2006; 442: 461-465Crossref PubMed Scopus (795) Google Scholar; Grivennikov et al., 2012Grivennikov S.I. Wang K. Mucida D. Stewart C.A. Schnabl B. Jauch D. Taniguchi K. Yu G.-Y. Osterreicher C.H. Hung K.E. et al.Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth.Nature. 2012; 491: 254-258Crossref PubMed Scopus (873) Google Scholar; Wang et al., 2014Wang K. Kim M.K. Di Caro G. Wong J. Shalapour S. Wan J. Zhang W. Zhong Z. Sanchez-Lopez E. Wu L.-W. et al.Interleukin-17 receptor a signaling in transformed enterocytes promotes early colorectal tumorigenesis.Immunity. 2014; 41: 1052-1063Abstract Full Text Full Text PDF PubMed Scopus (209) Google Scholar; Grivennikov et al., 2010Grivennikov S.I. Greten F.R. Karin M. Immunity, inflammation, and cancer.Cell. 2010; 140: 883-899Abstract Full Text Full Text PDF PubMed Scopus (7055) Google Scholar). It remains poorly defined how malignant transformation in the intestine promotes these inflammatory responses to the microbiota, and the development of novel strategies to prevent this outcome could be beneficial in CRC. Emerging evidence indicates that microbiota also substantially impacts the responsiveness of tumors to therapies, including revolutionary immune checkpoint blockade (Iida et al., 2013Iida N. Dzutsev A. Stewart C.A. Smith L. Bouladoux N. Weingarten R.A. Molina D.A. Salcedo R. Back T. Cramer S. et al.Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment.Science. 2013; 342: 967-970Crossref PubMed Scopus (1184) Google Scholar; Viaud et al., 2013Viaud S. Saccheri F. Mignot G. Yamazaki T. Daillère R. Hannani D. Enot D.P. Pfirschke C. Engblom C. Pittet M.J. et al.The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide.Science. 2013; 342: 971-976Crossref PubMed Scopus (1124) Google Scholar; Vétizou et al., 2015Vétizou M. Pitt J.M. Daillère R. Lepage P. Waldschmitt N. Flament C. Rusakiewicz S. Routy B. Roberti M.P. Duong C.P.M. et al.Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota.Science. 2015; 350: 1079-1084Crossref PubMed Scopus (1727) Google Scholar; Sivan et al., 2015Sivan A. Corrales L. Hubert N. Williams J.B. Aquino-Michaels K. Earley Z.M. Benyamin F.W. Lei Y.M. Jabri B. Alegre M.-L. et al.Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy.Science. 2015; 350: 1084-1089Crossref PubMed Scopus (1877) Google Scholar; Daillère et al., 2016Daillère R. Vétizou M. Waldschmitt N. Yamazaki T. Isnard C. Poirier-Colame V. Duong C.P.M. Flament C. Lepage P. Roberti M.P. et al.Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects.Immunity. 2016; 45: 931-943Abstract Full Text Full Text PDF PubMed Scopus (374) Google Scholar; Gopalakrishnan et al., 2018Gopalakrishnan V. Spencer C.N. Nezi L. Reuben A. Andrews M.C. Karpinets T.V. Prieto P.A. Vicente D. Hoffman K. Wei S.C. et al.Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients.Science. 2018; 359: 97-103Crossref PubMed Scopus (1932) Google Scholar; Matson et al., 2018Matson V. Fessler J. Bao R. Chongsuwat T. Zha Y. Alegre M.-L. Luke J.J. Gajewski T.F. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients.Science. 2018; 359: 104-108Crossref PubMed Scopus (1240) Google Scholar; Routy et al., 2018bRouty B. Le Chatelier E. Derosa L. Duong C.P.M. Alou M.T. Daillère R. Fluckiger A. Messaoudene M. Rauber C. Roberti M.P. et al.Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors.Science. 2018; 359: 91-97Crossref PubMed Scopus (2269) Google Scholar; Tanoue et al., 2019Tanoue T. Morita S. Plichta D.R. Skelly A.N. Suda W. Sugiura Y. Narushima S. Vlamakis H. Motoo I. Sugita K. et al.A defined commensal consortium elicits CD8 T cells and anti-cancer immunity.Nature. 2019; 565: 600-605Crossref PubMed Scopus (434) Google Scholar; Mager et al., 2020Mager L.F. Burkhard R. Pett N. Cooke N.C.A. Brown K. Ramay H. Paik S. Stagg J. Groves R.A. Gallo M. et al.Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy.Science. 2020; 369: 1481-1489Crossref PubMed Google Scholar; Davar et al., 2021Davar D. Dzutsev A.K. McCulloch J.A. Rodrigues R.R. Chauvin J.-M. Morrison R.M. Deblasio R.N. Menna C. Ding Q. Pagliano O. et al.Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients.Science. 2021; 371: 595-602Crossref PubMed Scopus (236) Google Scholar; Baruch et al., 2021Baruch E.N. Youngster I. Ben-Betzalel G. Ortenberg R. Lahat A. Katz L. Adler K. Dick-Necula D. Raskin S. Bloch N. et al.Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients.Science. 2021; 371: 602-609Crossref PubMed Scopus (266) Google Scholar). Provocative data from these studies demonstrated that the microbiota is required for the success of checkpoint blockade in mouse models, and further, that the composition or presence of specific microbes in patient populations are sufficient to augment therapeutic outcome when transferred to germ-free or antibiotics (ABX)-treated recipient mice (Vétizou et al., 2015Vétizou M. Pitt J.M. Daillère R. Lepage P. Waldschmitt N. Flament C. Rusakiewicz S. Routy B. Roberti M.P. Duong C.P.M. et al.Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota.Science. 2015; 350: 1079-1084Crossref PubMed Scopus (1727) Google Scholar; Sivan et al., 2015Sivan A. Corrales L. Hubert N. Williams J.B. Aquino-Michaels K. Earley Z.M. Benyamin F.W. Lei Y.M. Jabri B. Alegre M.-L. et al.Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy.Science. 2015; 350: 1084-1089Crossref PubMed Scopus (1877) Google Scholar; Gopalakrishnan et al., 2018Gopalakrishnan V. Spencer C.N. Nezi L. Reuben A. Andrews M.C. Karpinets T.V. Prieto P.A. Vicente D. Hoffman K. Wei S.C. et al.Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients.Science. 2018; 359: 97-103Crossref PubMed Scopus (1932) Google Scholar; Matson et al., 2018Matson V. Fessler J. Bao R. Chongsuwat T. Zha Y. Alegre M.-L. Luke J.J. Gajewski T.F. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients.Science. 2018; 359: 104-108Crossref PubMed Scopus (1240) Google Scholar; Routy et al., 2018bRouty B. Le Chatelier E. Derosa L. Duong C.P.M. Alou M.T. Daillère R. Fluckiger A. Messaoudene M. Rauber C. Roberti M.P. et al.Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors.Science. 2018; 359: 91-97Crossref PubMed Scopus (2269) Google Scholar; Tanoue et al., 2019Tanoue T. Morita S. Plichta D.R. Skelly A.N. Suda W. Sugiura Y. Narushima S. Vlamakis H. Motoo I. Sugita K. et al.A defined commensal consortium elicits CD8 T cells and anti-cancer immunity.Nature. 2019; 565: 600-605Crossref PubMed Scopus (434) Google Scholar). Moreover, recent studies demonstrated that fecal microbiota transplantation (FMT) may be harnessed as a method to boost responsiveness to checkpoint blockade in resistant cancer patients (Baruch et al., 2021Baruch E.N. Youngster I. Ben-Betzalel G. Ortenberg R. Lahat A. Katz L. Adler K. Dick-Necula D. Raskin S. Bloch N. et al.Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients.Science. 2021; 371: 602-609Crossref PubMed Scopus (266) Google Scholar; Davar et al., 2021Davar D. Dzutsev A.K. McCulloch J.A. Rodrigues R.R. Chauvin J.-M. Morrison R.M. Deblasio R.N. Menna C. Ding Q. Pagliano O. et al.Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients.Science. 2021; 371: 595-602Crossref PubMed Scopus (236) Google Scholar). These studies provide one explanation for the variable response of individual cancer patients or tumor types to checkpoint blockade therapy (Sharma et al., 2017Sharma P. Hu-Lieskovan S. Wargo J.A. Ribas A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy.Cell. 2017; 168: 707-723Abstract Full Text Full Text PDF PubMed Scopus (2178) Google Scholar). In particular, CRC and other gastrointestinal cancers demonstrate a remarkably poor response to checkpoint blockade, with a notable exception of tumors harboring high microsatellite instability (Le et al., 2015Le D.T. Uram J.N. Wang H. Bartlett B.R. Kemberling H. Eyring A.D. Skora A.D. Luber B.S. Azad N.S. Laheru D. et al.PD-1 Blockade in Tumors with Mismatch-Repair Deficiency.N. Engl. J. Med. 2015; 372: 2509-2520Crossref PubMed Scopus (5658) Google Scholar). These studies provoke a number of fundamental gaps in knowledge, including a need to define the mechanisms by which the microbiota regulates checkpoint blockade, the pathways that control colonization with beneficial microbes, as well as the relevance of these findings to CRC patients who are known to exhibit microbiota dysbiosis and resistance to checkpoint blockade (Brennan and Garrett, 2016Brennan C.A. Garrett W.S. Gut Microbiota, Inflammation, and Colorectal Cancer.Annu. Rev. Microbiol. 2016; 70: 395-411Crossref PubMed Scopus (294) Google Scholar; Sharma et al., 2017Sharma P. Hu-Lieskovan S. Wargo J.A. Ribas A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy.Cell. 2017; 168: 707-723Abstract Full Text Full Text PDF PubMed Scopus (2178) Google Scholar). Innate lymphoid cells (ILCs) are a recently appreciated family of tissue-resident innate lymphocytes that play critical roles in regulating host-microbe interactions at mucosal barrier surfaces of the mammalian body (Artis and Spits, 2015Artis D. Spits H. The biology of innate lymphoid cells.Nature. 2015; 517: 293-301Crossref PubMed Scopus (988) Google Scholar; Colonna, 2018Colonna M. Innate Lymphoid Cells: Diversity, Plasticity, and Unique Functions in Immunity.Immunity. 2018; 48: 1104-1117Abstract Full Text Full Text PDF PubMed Scopus (176) Google Scholar; Vivier et al., 2018Vivier E. Artis D. Colonna M. Diefenbach A. Di Santo J.P. Eberl G. Koyasu S. Locksley R.M. McKenzie A.N.J. Mebius R.E. et al.Innate Lymphoid Cells: 10 Years On.Cell. 2018; 174: 1054-1066Abstract Full Text Full Text PDF PubMed Scopus (861) Google Scholar). In particular, group 3 ILCs (ILC3s) are innate counterparts of TH17 cells, express retinoic acid-related orphan receptor gamma t (RORγt), are enriched in the intestine, and regulate interactions with the microbiota through production of cytokines such as IL-17 and IL-22 (Sonnenberg and Artis, 2015Sonnenberg G.F. Artis D. Innate lymphoid cells in the initiation, regulation and resolution of inflammation.Nat. Med. 2015; 21: 698-708Crossref PubMed Scopus (362) Google Scholar; Vivier et al., 2018Vivier E. Artis D. Colonna M. Diefenbach A. Di Santo J.P. Eberl G. Koyasu S. Locksley R.M. McKenzie A.N.J. Mebius R.E. et al.Innate Lymphoid Cells: 10 Years On.Cell. 2018; 174: 1054-1066Abstract Full Text Full Text PDF PubMed Scopus (861) Google Scholar). ILC3s also play a broader role in modulating adaptive immunity through direct cellular interactions with T cells (Sonnenberg and Hepworth, 2019Sonnenberg G.F. Hepworth M.R. Functional interactions between innate lymphoid cells and adaptive immunity.Nat. Rev. Immunol. 2019; 19: 599-613Crossref PubMed Scopus (95) Google Scholar). The CCR6+ lymphoid tissue inducer (LTi)-like subset of ILC3s express major histocompatibility complex class II (MHCII) and have the potential to process and present antigens to CD4 T cells (von Burg et al., 2014von Burg N. Chappaz S. Baerenwaldt A. Horvath E. Bose Dasgupta S. Ashok D. Pieters J. Tacchini-Cottier F. Rolink A. Acha-Orbea H. Finke D. Activated group 3 innate lymphoid cells promote T-cell-mediated immune responses.Proc. Natl. Acad. Sci. USA. 2014; 111: 12835-12840Crossref PubMed Scopus (112) Google Scholar; Hepworth et al., 2013Hepworth M.R. Monticelli L.A. Fung T.C. Ziegler C.G.K. Grunberg S. Sinha R. Mantegazza A.R. Ma H.-L. Crawford A. Angelosanto J.M. et al.Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria.Nature. 2013; 498: 113-117Crossref PubMed Scopus (513) Google Scholar, Hepworth et al., 2015Hepworth M.R. Fung T.C. Masur S.H. Kelsen J.R. McConnell F.M. Dubrot J. Withers D.R. Hugues S. Farrar M.A. Reith W. et al.Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells.Science. 2015; 348: 1031-1035Crossref PubMed Scopus (304) Google Scholar). MHCII+ ILC3s inhibit microbiota-specific effector CD4 T cell responses and prevent intestinal inflammation (Hepworth et al., 2013Hepworth M.R. Monticelli L.A. Fung T.C. Ziegler C.G.K. Grunberg S. Sinha R. Mantegazza A.R. Ma H.-L. Crawford A. Angelosanto J.M. et al.Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria.Nature. 2013; 498: 113-117Crossref PubMed Scopus (513) Google Scholar, Hepworth et al., 2015Hepworth M.R. Fung T.C. Masur S.H. Kelsen J.R. McConnell F.M. Dubrot J. Withers D.R. Hugues S. Farrar M.A. Reith W. et al.Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells.Science. 2015; 348: 1031-1035Crossref PubMed Scopus (304) Google Scholar; Melo-Gonzalez et al., 2019Melo-Gonzalez F. Kammoun H. Evren E. Dutton E.E. Papadopoulou M. Bradford B.M. Tanes C. Fardus-Reid F. Swann J.R. Bittinger K. et al.Antigen-presenting ILC3 regulate T cell-dependent IgA responses to colonic mucosal bacteria.J. Exp. Med. 2019; 216: 728-742Crossref PubMed Scopus (71) Google Scholar). Further, translational analyses revealed that ILC3s or effector functions are dramatically reduced in the inflamed intestine of individuals with IBD (Bernink et al., 2013Bernink J.H. Peters C.P. Munneke M. te Velde A.A. Meijer S.L. Weijer K. Hreggvidsdottir H.S. Heinsbroek S.E. Legrand N. Buskens C.J. et al.Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues.Nat. Immunol. 2013; 14: 221-229Crossref PubMed Scopus (689) Google Scholar, Bernink et al., 2015Bernink J.H. Krabbendam L. Germar K. de Jong E. Gronke K. Kofoed-Nielsen M. Munneke J.M. Hazenberg M.D. Villaudy J. Buskens C.J. et al.Interleukin-12 and -23 Control Plasticity of CD127(+) Group 1 and Group 3 Innate Lymphoid Cells in the Intestinal Lamina Propria.Immunity. 2015; 43: 146-160Abstract Full Text Full Text PDF PubMed Scopus (398) Google Scholar; Hepworth et al., 2015Hepworth M.R. Fung T.C. Masur S.H. Kelsen J.R. McConnell F.M. Dubrot J. Withers D.R. Hugues S. Farrar M.A. Reith W. et al.Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells.Science. 2015; 348: 1031-1035Crossref PubMed Scopus (304) Google Scholar; Li et al., 2017Li J. Doty A.L. Tang Y. Berrie D. Iqbal A. Tan S.A. Clare-Salzler M.J. Wallet S.M. Glover S.C. Enrichment of IL-17A+ IFN-γ+ and IL-22+ IFN-γ+ T cell subsets is associated with reduction of NKp44+ ILC3s in the terminal ileum of Crohn’s disease patients.Clin. Exp. Immunol. 2017; 190: 143-153Crossref PubMed Scopus (25) Google Scholar; Zhou et al., 2019Zhou L. Chu C. Teng F. Bessman N.J. Goc J. Santosa E.K. Putzel G.G. Kabata H. Kelsen J.R. Baldassano R.N. et al.Innate lymphoid cells support regulatory T cells in the intestine through interleukin-2.Nature. 2019; 568: 405-409Crossref PubMed Scopus (113) Google Scholar; Martin et al., 2019Martin J.C. Chang C. Boschetti G. Ungaro R. Giri M. Grout J.A. Gettler K. Chuang L.-S. Nayar S. Greenstein A.J. et al.Single-Cell Analysis of Crohn’s Disease Lesions Identifies a Pathogenic Cellular Module Associated with Resistance to Anti-TNF Therapy.Cell. 2019; 178: 1493-1508.e20Abstract Full Text Full Text PDF PubMed Scopus (205) Google Scholar), a process that is driven in part by pro-inflammatory stimuli and conversion to a group 1 ILC (ILC1) phenotype (Vonarbourg et al., 2010Vonarbourg C. Mortha A. Bui V.L. Hernandez P.P. Kiss E.A. Hoyler T. Flach M. Bengsch B. Thimme R. Hölscher C. et al.Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt(+) innate lymphocytes.Immunity. 2010; 33: 736-751Abstract Full Text Full Text PDF PubMed Scopus (515) Google Scholar; Bernink et al., 2013Bernink J.H. Peters C.P. Munneke M. te Velde A.A. Meijer S.L. Weijer K. Hreggvidsdottir H.S. Heinsbroek S.E. Legrand N. Buskens C.J. et al.Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues.Nat. Immunol. 2013; 14: 221-229Crossref PubMed Scopus (689) Google Scholar, Bernink et al., 2015Bernink J.H. Krabbendam L. Germar K. de Jong E. Gronke K. Kofoed-Nielsen M. Munneke J.M. Hazenberg M.D. Villaudy J. Buskens C.J. et al.Interleukin-12 and -23 Control Plasticity of CD127(+) Group 1 and Group 3 Innate Lymphoid Cells in the Intestinal Lamina Propria.Immunity. 2015; 43: 146-160Abstract Full Text Full Text PDF PubMed Scopus (398) Google Scholar). Early studies thus far have reported that ILC3s infiltrate tumors and influence cancer mainly via production of cytokines (Bergmann et al., 2017Bergmann H. Roth S. Pechloff K. Kiss E.A. Kuhn S. Heikenwälder M. Diefenbach A. Greten F.R. Ruland J. Card9-dependent IL-1β regulates IL-22 production from group 3 innate lymphoid cells and promotes colitis-associated cancer.Eur. J. Immunol. 2017; 47: 1342-1353Crossref PubMed Scopus (41) Google Scholar; Chan et al., 2014Chan I.H. Jain R. Tessmer M.S. Gorman D. Mangadu R. Sathe M. Vives F. Moon C. Penaflor E. Turner S. et al.Interleukin-23 is sufficient to induce rapid de novo gut tumorigenesis, independent of carcinogens, through activation of innate lymphoid cells.Mucosal Immunol. 2014; 7: 842-856Crossref PubMed Scopus (101) Google Scholar; Goc et al., 2016Goc J. Hepworth M.R. Sonnenberg G.F. Group 3 innate lymphoid cells: regulating host-commensal bacteria interactions in inflammation and cancer.Int. Immunol. 2016; 28: 43-52PubMed Google Scholar; Irshad et al., 2017Irshad S. Flores-Borja F. Lawler K. Monypenny J. Evans R. Male V. Gordon P. Cheung A. Gazinska P. Noor F. et al.RORγt+ Innate Lymphoid Cells Promote Lymph Node Metastasis of Breast Cancers.Cancer Res. 2017; 77: 1083-1096Crossref PubMed Scopus (68) Google Scholar; Kirchberger et al., 2013Kirchberger S. Royston D.J. Boulard O. Thornton E. Franchini F. Szabady R.L. Harrison O. Powrie F. Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model.J. Exp. Med. 2013; 210: 917-931Crossref PubMed Scopus (386) Google Scholar; Koh et al., 2019Koh J. Kim H.Y. Lee Y. Park I.K. Kang C.H. Kim Y.T. Kim J.-E. Choi M. Lee W.-W. Jeon Y.K. Chung D.H. IL23-Producing Human Lung Cancer Cells Promote Tumor Growth via Conversion of Innate Lymphoid Cell 1 (ILC1) into ILC3.Clin. Cancer Res. 2019; 25: 4026-4037Crossref PubMed Scopus (35) Google Scholar; Liu et al., 2019Liu Y. Song Y. Lin D. Lei L. Mei Y. Jin Z. Gong H. Zhu Y. Hu B. Zhang Y. et al.NCR- group 3 innate lymphoid cells orchestrate IL-23/IL-17 axis to promote hepatocellular carcinoma development.EBioMedicine. 2019; 41: 333-344Abstract Full Text Full Text PDF PubMed Scopus (29) Google Scholar; Xuan et al., 2020Xuan X. Zhou J. Tian Z. Lin Y. Song J. Ruan Z. Ni B. Zhao H. Yang W. ILC3 cells promote the proliferation and invasion of pancreatic cancer cells through IL-22/AKT signaling.Clin. Transl. Oncol. 2020; 22: 563-575Crossref PubMed Scopus (14) Google Scholar). Conversely, other reports suggest that ILC3s induce lymphoid neogenesis (Carrega et al., 2015Carrega P. Loiacono F. Di Carlo E. Scaramuccia A. Mora M. Conte R. Benelli R. Spaggiari G.M. Cantoni C. Campana S. et al.NCR(+)ILC3 concentrate in human lung cancer and associate with intratumoral lymphoid structures.Nat. Commun. 2015; 6: 8280Crossref PubMed Scopus (160) Google Scholar), promote vasculature changes (Eisenring et al., 2010Eisenring M. vom Berg J. Kristiansen G. Saller E. Becher B. IL-12 initiates tumor rejection via lymphoid tissue-inducer cells bearing the natural cytotoxicity receptor NKp46.Nat. Immunol. 2010; 11: 1030-1038Crossref PubMed Scopus (163) Google Scholar; Nussbaum et al., 2017Nussbaum K. Burkhard S.H. Ohs I. Mair F. Klose C.S.N. Arnold S.J. Diefenbach A. Tugues S. Becher B. Tissue microenvironment dictates the fate and tumor-suppressive function of type 3 ILCs.J. Exp. Med. 2017; 214: 2331-2347Crossref PubMed Scopus (56) Google Scholar) or protect from genotoxic stress (Gronke et al., 2019Gronke K. Hernández P.P. Zimmermann J. Klose C.S.N. Kofoed-Branzk M. Guendel F. Witkowski M. Tizian C. Amann L. Schumacher F. et al.Interleukin-22 protects intestinal stem cells against genotoxic stress.Nature. 2019; 566: 249-253Crossref PubMed Scopus (151) Google Scholar). Many of these studies were necessarily performed using mice that lack adaptive immunity, raising questions about whether cross-talk between ILC3 and adaptive immunity is also important in cancer (Hanahan and Weinberg, 2011Hanahan D. Weinberg R.A. Hallmarks of cancer: the next generation.Cell. 2011; 144: 646-674Abstract Full Text Full Text PDF PubMed Scopus (40071) Google Scholar; Fridman et al., 2017Fridman W.H. Zitvogel L. Sautès-Fridman C. Kroemer G. The immune contexture in cancer prognosis and treatment.Nat. Rev. Clin. Oncol. 2017; 14: 717-734Crossref PubMed Scopus (951) Google Scholar; Bruni et al., 2020Bruni D. Angell H.K. Galon J. The immune contexture and Immunoscore in cancer prognosis and therapeutic e
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gjww应助正直夜安采纳,获得10
刚刚
中和皇极应助神勇友灵采纳,获得10
1秒前
Anoxia发布了新的文献求助10
1秒前
TUYANG完成签到,获得积分10
1秒前
Ren发布了新的文献求助10
2秒前
结实的夜白完成签到 ,获得积分10
2秒前
3秒前
找文献小助手完成签到,获得积分10
3秒前
zhaofw完成签到,获得积分10
3秒前
火星上的糖豆完成签到,获得积分10
3秒前
4秒前
shinysparrow应助词汇过万采纳,获得10
4秒前
咸鱼完成签到 ,获得积分10
5秒前
汉堡包应助alai采纳,获得10
5秒前
年轻的笑天完成签到,获得积分10
5秒前
光亮机器猫完成签到,获得积分20
6秒前
昱珂完成签到,获得积分10
6秒前
poegtam完成签到,获得积分10
8秒前
8秒前
MayoCQ完成签到,获得积分10
9秒前
大方溪流完成签到,获得积分10
9秒前
个性的紫菜应助告白采纳,获得10
10秒前
10秒前
蛙趣完成签到,获得积分10
10秒前
冰糖完成签到,获得积分10
11秒前
12秒前
Ren完成签到,获得积分20
13秒前
神勇友灵完成签到,获得积分10
13秒前
14秒前
14秒前
浣熊小呆完成签到,获得积分10
15秒前
蓝色sea完成签到,获得积分10
15秒前
16秒前
李瑞卿完成签到 ,获得积分10
16秒前
ABC完成签到,获得积分20
16秒前
17秒前
JamesPei应助欢喜恶天采纳,获得10
18秒前
18秒前
cyuan发布了新的文献求助10
18秒前
19秒前
高分求助中
The three stars each : the Astrolabes and related texts 1070
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2407759
求助须知:如何正确求助?哪些是违规求助? 2104395
关于积分的说明 5312031
捐赠科研通 1831924
什么是DOI,文献DOI怎么找? 912802
版权声明 560691
科研通“疑难数据库(出版商)”最低求助积分说明 488063