Vertical Structure-Based Classification of Oceanic Eddy Using 3-D Convolutional Neural Network

涡流 高度计 地质学 反气旋 卷积神经网络 人工神经网络 人工智能 模式识别(心理学) 计算机科学 遥感 气象学 气候学 地理 湍流
作者
Baoxiang Huang,Linyao Ge,X. Chen,Ge Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:34
标识
DOI:10.1109/tgrs.2021.3103251
摘要

The eddy identification is an important part of human cognition of the ocean. Significant achievements have been made by using sea level anomaly (SLA) data observed by the altimeter. However, the abundant eddies, which do not cause sea surface characteristic anomalies, cannot be identified. In this study, the eddy subsurface vertical structure-oriented 3-D neural network is developed to classify the oceanic eddies. This study is among the first that explores the ability of deep learning in eddy identification with vertical structure. First, the purified eddy profiles dataset is constructed based on the fact that the structure derived from vertical profiles is highly correlated with the sea surface topography detected by altimetry. Then, the eddy vertical structure-oriented 3-D neural network based on the residual network (ResNet) is constructed, which can classify the eddies as anticyclonic eddies (AEs), cyclonic eddies (CEs), and noneddies (NEs) effectively. Furthermore, the spatial and temporal features can be combined in the proposed network as external factors. Meanwhile, through 3-D convolutions and 3-D pooling, the proposed network is capable of modeling 3-D eddy data and can be extended to the deeper network structure. Finally, the classification experiments are implemented to validate the performance of the proposed methodology. The most striking result emerging from experiments is that the proposed method can expand the capacity of eddy identification by using vertical profiles as calibrated by altimetry with competitive classification performance. Together these results provide important insights into the application of artificial intelligence in oceanic eddy research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hwezhu完成签到,获得积分10
1秒前
艺_完成签到 ,获得积分10
1秒前
sinlar完成签到,获得积分10
2秒前
3秒前
充电宝应助精英刺客采纳,获得10
3秒前
4秒前
现实的俊驰完成签到,获得积分10
6秒前
任军向完成签到,获得积分20
7秒前
酷炫的电源完成签到 ,获得积分10
8秒前
8秒前
8秒前
ZHEN完成签到,获得积分20
8秒前
自由的未来完成签到,获得积分10
10秒前
可爱的函函应助Dsxxx采纳,获得10
10秒前
10秒前
10秒前
冷傲迎梦发布了新的文献求助10
12秒前
成懂事长发布了新的文献求助10
12秒前
789发布了新的文献求助10
12秒前
hou完成签到 ,获得积分10
12秒前
jcae123发布了新的文献求助10
14秒前
繁荣的忆文完成签到,获得积分10
15秒前
16秒前
听风完成签到,获得积分10
16秒前
深情的鞯完成签到,获得积分10
18秒前
Shan完成签到 ,获得积分10
18秒前
19秒前
Twinkle发布了新的文献求助10
22秒前
jcae123完成签到,获得积分10
23秒前
Epiphany完成签到 ,获得积分10
23秒前
桐桐应助long采纳,获得10
26秒前
完美世界应助Gaga采纳,获得10
26秒前
自由的傲易完成签到,获得积分10
27秒前
一只完成签到,获得积分10
27秒前
lllllnnnnj发布了新的文献求助10
27秒前
27秒前
量子光学的腔光力完成签到,获得积分10
28秒前
所所应助789采纳,获得10
30秒前
30秒前
小开完成签到,获得积分10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781110
求助须知:如何正确求助?哪些是违规求助? 3326526
关于积分的说明 10227602
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669552
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734