Classification of focal liver lesions in CT images using convolutional neural networks with lesion information augmented patches and synthetic data augmentation

卷积神经网络 人工智能 模式识别(心理学) 计算机科学 病变 深度学习 上下文图像分类 图像(数学) 医学 病理
作者
Hansang Lee,Haeil Lee,Helen Hong,Heejin Bae,Joon Seok Lim,Junmo Kim
出处
期刊:Medical Physics [Wiley]
卷期号:48 (9): 5029-5046 被引量:27
标识
DOI:10.1002/mp.15118
摘要

Abstract Purpose We propose a deep learning method that classifies focal liver lesions (FLLs) into cysts, hemangiomas, and metastases from portal phase abdominal CT images. We propose a synthetic data augmentation process to alleviate the class imbalance and the Lesion INformation Augmented (LINA) patch to improve the learning efficiency. Methods A dataset of 502 portal phase CT scans of 1,290 FLLs was used. First, to alleviate the class imbalance and to diversify the training data patterns, we suggest synthetic training data augmentation using DCGAN‐based lesion mask synthesis and pix2pix‐based mask‐to‐image translation. Second, to improve the learning efficiency of convolutional neural networks (CNNs) for the small lesions, we propose a novel type of input patch termed the LINA patch to emphasize the lesion texture information while also maintaining the lesion boundary information in the patches. Third, we construct a multi‐scale CNN through a model ensemble of ResNet‐18 CNNs trained on LINA patches of various mini‐patch sizes. Results The experiments demonstrate that (a) synthetic data augmentation method shows characteristics different but complementary to those in conventional real data augmentation in augmenting data distributions, (b) the proposed LINA patches improve classification performance compared to those by existing types of CNN input patches due to the enhanced texture and boundary information in the small lesions, and (c) through an ensemble of LINA patch‐trained CNNs with different mini‐patch sizes, the multi‐scale CNN further improves overall classification performance. As a result, the proposed method achieved an accuracy of 87.30%, showing improvements of 10.81%p and 15.0%p compared to the conventional image patch‐trained CNN and texture feature‐trained SVM, respectively. Conclusions The proposed synthetic data augmentation method shows promising results in improving the data diversity and class imbalance, and the proposed LINA patches enhance the learning efficiency compared to the existing input image patches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助熊熊采纳,获得10
刚刚
哦耶发布了新的文献求助10
刚刚
赘婿应助柯擎汉采纳,获得30
刚刚
烟花应助swsx1317采纳,获得10
刚刚
Jay完成签到,获得积分10
1秒前
Xianhe完成签到,获得积分10
1秒前
ENO_i发布了新的文献求助10
2秒前
李爱国应助调皮初蓝采纳,获得10
2秒前
2秒前
张雨飞发布了新的文献求助10
2秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
xiang发布了新的文献求助10
5秒前
5秒前
5秒前
袁小圆发布了新的文献求助20
6秒前
6秒前
8秒前
SweetNanchu发布了新的文献求助10
8秒前
Owen应助奶冻采纳,获得10
8秒前
8秒前
虚幻的电灯胆完成签到,获得积分20
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
znlm发布了新的文献求助10
11秒前
lry发布了新的文献求助10
11秒前
zyf发布了新的文献求助10
12秒前
16328发布了新的文献求助10
13秒前
13秒前
14秒前
蒋庆完成签到,获得积分10
15秒前
哦耶完成签到,获得积分20
15秒前
SciGPT应助科研通管家采纳,获得10
16秒前
无极微光应助科研通管家采纳,获得20
16秒前
16秒前
BiuBiuBiu完成签到 ,获得积分10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
17秒前
李爱国应助古法杏子采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711843
求助须知:如何正确求助?哪些是违规求助? 5205952
关于积分的说明 15265402
捐赠科研通 4863994
什么是DOI,文献DOI怎么找? 2611068
邀请新用户注册赠送积分活动 1561392
关于科研通互助平台的介绍 1518706