All‐Inorganic Quantum Dot Light‐Emitting Diodes with Suppressed Luminance Quenching Enabled by Chloride Passivated Tungsten Phosphate Hole Transport Layers

量子点 猝灭(荧光) 材料科学 光电子学 发光二极管 二极管 亮度 发光 光化学 化学 光学 荧光 物理 冶金
作者
Fan Cao,Qianqian Wu,Yizhen Sui,Sheng Wang,Yongjiang Dou,Weihong Hua,Lingmei Kong,Lin Wang,Jianhua Zhang,Tian Jiang,Xuyong Yang
出处
期刊:Small [Wiley]
卷期号:17 (19) 被引量:43
标识
DOI:10.1002/smll.202100030
摘要

Abstract Although excellent performance such as high efficiency and stability have been achieved in quantum dot (QD)‐based light‐emitting diodes (QLEDs) possessing an organic/inorganic hybrid device structure, the highly expected all‐inorganic QLEDs remain at the bottleneck stage in recent years, resulting from the luminance quenching of QDs caused by inorganic hole transport layer (HTL) and unbalanced charge injection due to large energy barrier for injecting holes from HTL to QDs. Here, it is reported that the solution‐processed inorganic environmentally friendly chloride (Cl)‐passivated tungsten phosphate (Cl@TPA) films serve as HTL. The incorporation of Cl in TPA effectively passivates the oxygen vacancies, which not only avoids the luminescence quenching of QDs by reducing carrier concentration but also facilitates the hole injection from HTL to QDs with a favorable electronic band alignment, thus achieving the record external quantum efficiency of ≈ 9.27%, among all previous reports about all‐inorganic QLEDs. Most importantly, the resulting all‐inorganic QLEDs with Cl@TPA exhibit a substantial improvement in the operational lifetime ( T 50 > 10 5 h under an initial luminance of 100 cd m −2 ), which is almost 30‐fold higher than the devices with TPA HTL. This work furnishes a promising strategy for highly efficient and stable QLEDs based on inorganic device structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助晓梦采纳,获得10
2秒前
tina完成签到,获得积分10
2秒前
所所应助陌路孤星采纳,获得10
3秒前
3秒前
3秒前
奶味蓝完成签到,获得积分10
3秒前
非而者厚应助苇一采纳,获得10
4秒前
John完成签到,获得积分20
4秒前
5秒前
ye发布了新的文献求助10
5秒前
狗大王完成签到,获得积分10
5秒前
橘子的角动量完成签到,获得积分10
5秒前
6秒前
科研通AI5应助zhangfan采纳,获得10
7秒前
8秒前
8秒前
8秒前
8秒前
9秒前
ningpang发布了新的文献求助10
9秒前
LVMIN发布了新的文献求助10
10秒前
五五我发布了新的文献求助10
10秒前
宇文宛菡发布了新的文献求助10
10秒前
12秒前
12秒前
12秒前
Lin2019发布了新的文献求助10
13秒前
yyhgyg发布了新的文献求助10
13秒前
略略略发布了新的文献求助10
14秒前
RRui完成签到,获得积分10
14秒前
14秒前
L_x完成签到 ,获得积分10
14秒前
14秒前
NexusExplorer应助陌路孤星采纳,获得10
16秒前
JIA发布了新的文献求助10
16秒前
英俊亦巧完成签到,获得积分10
16秒前
归尘发布了新的文献求助10
16秒前
17秒前
科研通AI5应助zhangfan采纳,获得10
19秒前
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808902
求助须知:如何正确求助?哪些是违规求助? 3353550
关于积分的说明 10365988
捐赠科研通 3069804
什么是DOI,文献DOI怎么找? 1685786
邀请新用户注册赠送积分活动 810743
科研通“疑难数据库(出版商)”最低求助积分说明 766304