弹性体
材料科学
压缩成型
复合材料
极限抗拉强度
聚合物
压缩永久变形
单体
天然橡胶
模具
作者
Saadman Sakib Rahman,Muhammad Arshad,Ahmed Jawad Qureshi,Aman Ullah
标识
DOI:10.1021/acsami.0c14220
摘要
A novel self-healable, fully reprocessable, and inkjet three-dimensional (3D) printable partially biobased elastomer is reported in this work. A long-chain unsaturated diacrylate monomer was first synthesized from canola oil and then cross-linked with a partially oxidized silicon-based copolymer containing free thiol groups and disulfide bonds. The elastomer is fabricated through inkjet 3D printing utilizing the photoinitiated thiol-ene click chemistry and reprocessed by compression molding exploiting the dynamic nature of disulfide bond. Self-healing is enabled by phosphine-catalyzed disulfide metathesis. The elastomer displayed a tensile strength of ∼52 kPa, a breaking strain of ∼24, and ∼86% healing efficiency at 80 °C temperature after 8 h. Moreover, the elastomer showed excellent thermal stability, and the highest thermal degradation temperature was recorded to be ∼524 °C. After reprocessing through compression molding, the elastomer fully recovered its mechanical and thermal properties. These properties of the elastomer yield an ecofriendly alternative of fossil fuel-based elastomers that can find broad applications in soft robotics, flexible wearable devices, strain sensors, health care, and next-generation energy-harvesting and -storage devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI